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Introduction

The theory of quantum fields in expanding universe has
evolved from its pioneering years into a necessary tool in
order to describe the Universe on large scales.
The de Sitter background has been the main arena where
to compute quantum effects.

In viable inflationary models, while |Ḣ| � H2, Ḣ may not be
zero

⇓
The study of quantum effects in a nearly de Sitter stage
with Ḣ 6= 0 is not of just pure theoretical interest.



Introduction

In general inflationary model quantum scalar fields can be
split into a long wave (coarse grained) component and a
short-wave one.
The former component effectively becomes quasi-classical
and it experiences a random walk described by the
stochastic inflation approach (Starobinsky (1986)).

The non-perturbative nature of the stochastic approach to
inflation is based on a number of heuristic approximations.
Therefore, it is very important to check, whenever possible,
results obtained by its application using the standard
perturbative QFT in curved space-time.
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Inflation and field-theoretical approach

Let us consider, in a spatially flat FLRW background geometry, a two field
model in which the dynamics is driven by a minimally coupled inflaton φ and
a minimally coupled scalar field χ is present. We shall neglect the χ energy
density and pressure in the background FLRW equations.
The action is given by

S =

∫
d4x

√
−g
[

R
16πG

− 1
2

gµν∂µφ∂νφ− V (φ)

−1
2

gµν∂µχ∂νχ− V̄ (χ)

]
and we can expand our background fields {φ, χ, gµν} up to second order in
the non-homogeneous perturbations, without fixing any gauge, as follows:

φ(t , ~x) = φ(0)(t) + φ(1)(t , ~x) +
φ(2)(t , ~x)

2
,

χ(t , ~x) = χ(0)(t) + χ(1)(t , ~x) +
χ(2)(t , ~x)

2



Inflation and field-theoretical approach

g00 = −1− 2α(1) − α(2), gi0 = −a
2

(
β
(1)
,i +

β
(2)
,i

2

)
,

gij = a2
[
δij

(
1− 2ψ(1) − ψ(2)

)
+ Dij

(
E (1) +

E (2)

2

)]
,

where Dij = ∂i∂j − δij (∇2/3).
The scalar sector can be reduced to the study of the gauge invariant
Sasaki-Mukhanov variable Q (Sasaki (1986), Mukhanov (1988)).
Q can be seen, order by order, as the scalar field fluctuations φ(n) on uniform
curvature hypersurface (see, for example, Malik (2005)).
At first order

Q(1) = φ(1) +
φ̇(0)

H

(
ψ(1) +

1
6
∇2E (1)

)
In the same way the physically meaningfull variable associated with χ is the
gauge invariant variable Qχ given, order by order, by its scalar field
fluctuations χ(n) on uniform curvature hypersurface.



Inflation and field-theoretical approach

To fix a gauge in the scalar sector we can, in particular, set to zero two scalar
variables among φ, α, β, ψ and E .

ψ = 0, E = 0 Uniform Curvature Gauge
⇓

Q(n) = φ(n) Q(n)
χ = χ(n)

In the UCG, at the leading order in the slow-roll approximation and in the
long-wavelength limit, the equation of motions satisfied by the scalar fields φ
and χ can be obtained order by order from the expansion around the
classical solution of the equations:

dφ
dN

= − Vφ
3 H(φ)2 ,

dχ
dN

= − V̄χ
3 H(φ)2



Inflation and field-theoretical approach

So for the inflaton field we have

φ̈(0) + 3Hφ̇(0) + Vφ = 0 , 3Hφ̇(1) +

[
Vφφ −

V 2
φ

3H2M2
pl

]
φ(1) = 0

3Hφ̇(2) +

[
Vφφ −

V 2
φ

3H2M2
pl

]
φ(2) = −

[
Vφφφ −

VφφVφ
H2M2

pl
+

2V 3
φ

9H4M4
pl

]
φ(1) 2

while for the field χ one obtains

χ̈(0) + 3Hχ̇(0) + V̄χ = 0 , 3Hχ̇(1) + V̄χχχ(1) = 2
Hφ
H

V̄χϕ(1)

3Hχ̇(2)+V̄χχχ(2) =2
Hφ
H

V̄χϕ(2)+2

[
Hφφ
H
−3
(

Hφ
H

)2
]

V̄χϕ(1)2 +4V̄χχ
Hφ
H
ϕ(1)χ(1)−V̄χχχχ(1)2
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Growth of quantum fluctuation: stochastic approach

How does one re-derive these results in the stochastic approach?

The consideration above suggests that one has to choose the time variable
N =

∫
H(φ)dt in the Langevin stochastic equation for the large-scale part of

φ or χ

In the past both N (Gangui, Lucchin, Matarrese, Mollerach (1994), Enqvist,
Nurmi, Podolsky, Rigopoulos (2008)) and the proper time t (Linde, Linde,
Mezhlumian (1994), Martin, Musso (2005)) were considered as time variable
in the Langevin stochastic equation.

The transformation from t to N is not a simple time reparametrization
t → f (t), this is made using the stochastic function H(φ) and leads to a
physically different stochastic process.

Statement: we should use the N variable when we consider any gauge
invariant quantity containing metric fluctuations. Otherwise, incorrect results
would be obtained using the stochastic approach which would then not
coincide with those obtained using perturbative QFT methods.



Growth of quantum fluctuation: stochastic approach

Statement supported by exact non-perturbative results (valid to all orders of
metric perturbations) from the general δN formalism which relates the value
of the gauge invariant metric perturbation ζ after inflation to the difference in
the number of e-folds N in different points of space (Starobinsky (1982,1985),
Sasaki, Stewart (1996))

The choice of a proper time variable in the stochastic equation is not an
absolute one.

This is dictated by the physical nature of ’clocks’ relevant to observable
effects.

Growth of gauge invariant quantum fluctuations⇒ N is the ’clock’.



Growth of quantum fluctuation: stochastic approach
The Langevin stochastic equations can then be written as

dφ
dN

= − Vφ
3H2 +

fφ
H
,

dχ
dN

= − V̄χ
3H2 +

fχ
H

〈fφ(N1)fφ(N2)〉 =
H4

4π2 δ(N1 − N2) , 〈fχ(N1)fχ(N2)〉 =
H4

4π2 δ(N1 − N2)

where H2 = V (φ)/3M2
pl is a function of φ, and the stochastic noise terms are

given, to the leading order in the slow-roll approximation, by

fφ(t , x) = εaH2
∫

d3k
(2π)3/2 δ(k − εaH)

[
âkφk (t)e−ik·x + â†kφ

∗
k (t)e+ik·x

]
fχ(t , x) = εaH2

∫
d3k

(2π)3/2 δ(k − εaH)
[
b̂kχk (t)e−ik·x + b̂†kχ

∗
k (t)e+ik·x

]
.

On expanding to first order one obtains the following stochastic equation for
the inflaton fluctuation

d
dN

φ(1) + 2M2
pl

(
Hφφ
H
−

H2
φ

H2

)
φ(1) =

fφ
H



Growth of quantum fluctuation: stochastic approach

The general stochastic solution is given by

φ(1) =
Vφ
V

∫ t

ti

dτ
(

V
Vφ

fφ
)
,

with the following result for the growth of quantum fluctuations

〈(φ(1))2〉 =
1

4π2

(
Vφ
V

)2 ∫ t

ti

dt ′H3
(

V
Vφ

)2

For example, for a chaotic model V = m2φ2

2 one obtains

〈(φ(1))2〉 =
H6

0 − H6

8π2m2H2 ,

which corresponds to the QFT result (Finelli, GM, Vacca, Venturi (2004)).



Growth of quantum fluctuation: stochastic approach

In the same way, to second order, we have the following evolution equation

d
dt
〈δφ(2)〉 =

H3

8π2

(
Vφ
V

)
−

(
1

3H
Vφφ + 2

Ḣ
H

)
〈δφ(2)〉

+

[
− 1

3H
Vφφφ +

(
1
H

Vφφ + 4
Ḣ
H

)
Vφ
V

]
〈(φ(1))2〉 .

with general solution

〈φ(2)〉=
(

Vφ
V

)∫ t

ti

dt ′
(

V
Vφ

){
H3

8π2

(
Vφ
V

)
+

[
− 1

3H
Vφφφ+

(
1
H

Vφφ + 4
Ḣ
H

)
Vφ
V

]
〈(φ(1))2〉

}

which also corresponds to the QFT result in curved space-time (Finelli, GM,
Starobinsky, Vacca, Venturi (2009)).



Growth of quantum fluctuation: stochastic approach

Proceeding in the same way for the χ fluctuations one obtains the following
first order stochastic equations

dχ(1)

dt
= − 1

3H
V̄χχχ(1) +

2
3

Hφ
H2 V̄χϕ(1) + fχ ,

with solution

χ(1) = V̄χ
∫ t

ti

(
2
3

Hφ
H2 ϕ

(1) +
fχ
V̄χ

)
dτ ,

while to second order we have

dχ(2)

dt
= − 1

3H
V̄χχχ(2) +

2
3

Hφ
H2 V̄χϕ(2) − 1

3H
V̄χχχχ(1)2 +

4
3

Hφ
H2 V̄χχφ(1)χ(1)

−2
3

V̄χ

[
−Hφφ

H2 + 3
H2
φ

H3

]
φ(1)2 + 2

Hφ
H
φ(1)fχ



Growth of quantum fluctuation: stochastic approach

The growth of the quantum χ fluctuations is then given by

〈χ(1)2〉 =
V̄ 2
χ

4π2

∫ t

ti

dτ

[
H(τ)3

V̄χ(τ)2
− 4

9M2
pl

∫ τ

ti

dη
Ḣ(τ)

H(τ)3

Ḣ(η)

H(η)3

∫ η

ti

dσ
H(σ)5

Ḣ(σ)

]

and

〈χ(2)〉=V̄χ
∫ t

ti

dτ

[
2
3

Hφ
H2 〈φ

(2)〉− 1
3H

V̄χχχ
V̄χ
〈χ(1)2〉+4

3
Hφ
H2

V̄χχ
V̄χ
〈φ(1)χ(1)〉+2

3

(
Hφφ
H2 −3

H2
φ

H3

)
〈φ(1)2〉

]

where

〈φ(1)χ(1)〉 = − V̄χ
12π2

φ̇

HM2
pl

∫ t

ti

dτ
∫ t

τ

dη

[
H(τ)5

Ḣ(τ)

Ḣ(η)

H(η)3

]



Outline

Introduction

Inflation and field-theoretical approach

Growth of quantum fluctuation: stochastic approach

Two field quadratic model: physical bounds from stochastic
approach

Test fields vs inflaton fluctuations

Conclusions



Two field quadratic model: physical bounds from
stochastic approach

Let us consider the particular case V (φ) = m2φ2

2 and V̄ (χ) =
m2
χχ

2

2 .
The background solution for the test field χ is

χ(0)(t) = χ(0)(ti )
(

H(t)
H(ti )

)m2
χ

m2

.

This remains a test field for the whole duration of the inflation era if

χ(0)(ti )2 �
[
1 +

α

9
m2

H2

]−1
1
α

(
H
Hi

)2−2α

6
H2

i

m2 M2
pl

for any value of H (where α =
m2
χ

m2 ).
For the case for α� 1 at the end of inflation (H ' m) one has

χ(0)(ti )2 � 6
α

M2
pl



Two field quadratic model: physical bounds from
stochastic approach

We then have

〈χ(1)2〉 =
3H2α

8π2m2(2− α)
(H4−2α

0 −H4−2α) +

− α2

48π2

χ(0)(ti )2

M2
pl

(
H
Hi

)2α 1
H4

(
H2 − H2

i

)3
.

The term dependent from the background value χ(0) will be negligible with
respect to the leading value of the first one, for α < 2, if

χ(0)(ti )2 � 18
2− α

1
α2

M2
plm

2

H2
i

.

This condition is different, and can be stronger, with respect to the previous
one.
If we consider the particular case of α� 1 and require that the previous
condition implies this one, we obtain

α� 3
2

m2

H2
i
.



Two field quadratic model: physical bounds from
stochastic approach

Analogously we can evaluate the growth of the quantum second order χ field

〈χ(2)〉 =
α

4π2

χ(0)(ti )
M2

pl

(
H
Hi

)α [
−H6

i

H4

1− α/2
6

+
H4

i

H2

1− α
4

+H2
i
α

4
− H2 1 + α

12

]
,

which at leading order gives

〈χ(2)〉 = − α

24π2

χ(0)(ti )
M2

pl

(
Hi

H

)4−α

H2
i

(
1− α

2

)
.



Two field quadratic model: physical bounds from
stochastic approach

Bound on cosmological perturbation theory

The quantum growth of the gauge invariant inflaton fluctuations is given, at
first order, by

〈(φ(1))2〉 =
H6

0 − H6

8π2m2H2 ,

and, to second order, by

〈φ(2)〉 =
φ̇

16π2m2HM2
pl

[
H6

0 − H6

H2 − 3
(

H4
0 − H4

)]
,

Let us study the validity of the perturbative expansion by considering the
ratios

〈φ(2)〉√
〈(φ(1))2〉

,

√
〈(φ(1))2〉
φ(0)



Two field quadratic model: physical bounds from
stochastic approach

We then obtain

〈δφ(2)〉√
〈(φ(1))2〉

= − 1
4π
√

3
1

Mpl

1
H2

(
H6

0 −H6)−3
(
H4

0 −H4)(
H6

0 − H6
)1/2

√
〈(φ(1))2〉
φ(0) =

1
4π
√

3
1

Mpl

1
H2

(
H6

0 − H6
)1/2

.

The two ratio are the same at the leading order toward the end of inflation.

When the perturbative expansion breaks down? When
√
〈(φ(1))2〉
φ(0) ∼ 1!

To study this ratio we use the variable Ñ defined as the number of e-folds

away from the maximum value Nmax = N0 = log amax
a(ti )

= 3
2

H2
0

m2

Nmax − Ñ = log
a(t)
a(ti )

→ Ñ =
3
2

H2

m2



Two field quadratic model: physical bounds from
stochastic approach

To leading order√
〈(φ(1))2〉
φ(0) = −

√
2

12π
m

Mpl

Nmax

Ñ

(
Nmax − Ñ

)1/2

On requiring that the absolute value of this ratio be less then one we obtain,

under the condition 768π2 M2
pl

H2
0
>> 1, the following approximate constraint

Ñ ≥ 3
√

3
24π

H3
0

Mplm2 .

Therefore, the perturbative expansion is valid for all the duration of inflation
only if

H0 <

(
12π√

3
Mplm2

)1/3

,

namely, for Mpl = 105m, if
H0 < 129.596m

In agreement with previous investigations (Finelli, GM, Vacca, Venturi
(2006)).
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Test fields vs inflaton fluctuations

Let us consider three different test scalar fields with a small effective mass
and a zero homogeneous expectation value on different inflationary
backgrounds driven by an inflaton with potential V (φ) in the slow-roll
approximation and in the UCG.

The stochastic growth of such test scalar field will be described, in this
simplified case, starting from the result given before in the particular limit
χ(0) = 0.

A. Test scalar field with a constant mass mχ

The stochastic equation is:

d〈χ(1) 2〉
dt

+
2m2

χ

3H(t)
〈χ(1) 2〉 =

H3(t)
4π2 .

Its general solution is

〈χ(1) 2〉 =

(∫ N

dn
H2(n)

4π2 e
∫ n 2m2

χ

3H2(ñ)
dñ
)

e
−
∫ N 2m2

χ

3H2(n)
dn
,

where we have assumed 〈χ(1) 2〉(Ni ) = 0.



Test fields vs inflaton fluctuations

B. Test scalar field with m2
χ = cH2

If |c| � 1 the stochastic equation is:

d〈χ(1) 2〉
dt

+
2c
3

H(t)〈χ(1) 2〉 =
H3(t)
4π2 .

Its general solution is

〈χ(1) 2〉 =

(∫ N

dn
H2(n)

4π2 e
2
3 cn
)

e−
2
3 cN ,

where we have assumed 〈χ(1) 2〉(Ni ) = 0.



Test fields vs inflaton fluctuations

C. Non-minimally coupled test scalar field
The stochastic equation is:

d〈χ(1) 2〉
dt

+ 4ξH(t)(2− ε)〈χ(1) 2〉 =
H3(t)
4π2 ,

where ξ is the non-minimal coupling to the Ricci scalar R and we assume
that |ξ| � 1 (however, ξN may be large).
The term in the action proportional to ξχ2R gives an effective time dependent
mass for χ: m2

χ = 6ξH2(2− ε) where ε = − Ḣ
H2 .

Its general solution is

〈χ(1) 2〉 =

(∫ N

dn
H2+4ξ(n)

4π2H4ξ
i

e8ξn

)(
Hi

H(N)

)4ξ

e−8ξN ,

where we have assumed 〈χ(1) 2〉(Ni ) = 0.



Test fields vs inflaton fluctuations

The results from these test fields should be compared with the growth of the
first order gauge-invariant Sasaki-Mukhanov variable.
In the UCG this can be described as

d〈φ(1) 2〉
dN

+ 2 (η − 2ε) 〈φ(1) 2〉 =
H2(t)
4π2 ,

where

ε =
M2

pl

2

(
Vφ
V

)2

, η = M2
pl

Vφφ
V

.

The general solution is given by

〈φ(1) 2〉 =
ε(N)

4π2

∫ N

dn
H2(n)

ε(n)
,

where we have assumed 〈φ(1) 2〉(Ni ) = 0.



Test fields vs inflaton fluctuations

In function of the scalar spectral index ns and of the tensor-to-scalar ratio r

ns = 1− 6ε+ 2η , r = 16ε

one obtains

d〈φ(1) 2〉REN

dN
+
(

ns − 1 +
r
8

)
〈φ(1) 2〉REN =

H2(t)
4π2 .

Power-law inflation, for which ns − 1 = −r/8 holds, lies at the threshold
between two opposite behaviours.

〈φ(1) 2〉 has the same eq. for a moduli with m2
χ = cH2 and

c = 3(ns − 1 + r/8)/2
⇓

Below the power-law inflation line inflaton fluctuations behave as a moduli
with negative c.



Inflationary Zoo

Inflationary zoo

Case 1: V (φ) = m2

2 φ
2 Chaotic quadratic inflation.

Case 2: V (φ) = V0e
− 1

Mpl

√
2
p φ Power-law inflation.

Case 3: V (φ) = V0 − M2

2 φ
2 Small field inflation model.

Case 4: V (φ) = V0 + M2

2 φ
2 (approximation for) Hybrid inflation.



Chaotic quadratic inflation

Chaotic quadratic inflation

GI Test Field A: 〈χ(1) 2〉 = 3H
2

m2
χ

m2

8π2(2m2−m2
χ)

(H
4−2

m2
χ

m2
i − H4−2

m2
χ

m2 )

GI Test Field B: 〈χ(1) 2〉 = m2

6π2

[(
1− e−

2
3 cN
) ( 9

4c2 + 3
2c NT

)
− 3

2c N
]
,

where NT =
3H2

i
2m2 .

GI Test Field C:

〈χ(1) 2〉 ' m2

6π2

e8ξ(NT−N)

(NT − N)2ξ

[
(NT − N)2+2ξE−1−2ξ

(
8ξ(NT − N)

)
−(NT − Ni )

2+2ξE−1−2ξ
(
8ξ(NT − Ni )

)]
.

GI Inflaton fluctuation:

〈φ(1) 2〉 =
H6

i − H6

8π2m2H2 .



Chaotic quadratic inflation

Chaotic quadratic inflation

Figure : Evolution of the mean square quantum fluctuations (in units
of m2

pl) versus the number of e-folds N for the quadratic chaotic
model. For the inflationary background we have chosen the
inflationary trajectory with m = 10−6 mpl and Hi = 10 m. The mean
square gauge invariant inflaton fluctuation (thick line) dominates over
those of gauge invariant test fields (mχ ' 0.3m is the solid line,
c = 0.02 is the dashed line, ξ = 0.001 is the dotted line).



Power-law inflation model

Power-law inflation model

GI Test Field A:

〈χ(1) 2〉 =
p

8π2 H2
i exp

(
−p

3
m2
χ

H2

)[
− exp

(
p
3

m2
χ

H2

)
H2

H2
i

+
p
3

m2
χ

H2
i

Ei

(
p
3

m2
χ

H2

)
+ exp

(
p
3

m2
χ

H2
i

)
− p

3
m2
χ

H2
i

Ei

(
p
3

m2
χ

H2
i

)]
,

where Ei is the exponential integral function.
GI Test Field B: 〈χ(1) 2〉 = p

8π2 H2
i

(
c p

3 − 1
)−1

(
e−2 N

p − e−
2
3 cN
)
.

GI Test Field C:

〈χ(1) 2〉 = p
8π2 H2

i (−2ξ − 1 + 4pξ)−1
(

e−2 N
p − eξN

(
4
p−8

))
.

GI Inflaton fluctuation: 〈φ(1) 2〉 = p
8π2 (H2

i − H2) .



Power-law inflation model

Power-law inflation model

Figure : Evolution of the mean square quantum fluctuations (in units
of m2

pl) versus the number of e-folds N for the exponential potential.
For the inflationary background we have chosen the inflationary
trajectory with p = 100 and ti = 107 m−1

pl . The mean square gauge
invariant inflaton fluctuation (thick line) dominates over those of
gauge invariant test fields (mχ = 10−6 mpl is the solid line, c = 0.1 is
the dashed line, ξ = 0.05 is the dotted line).



Small field inflation and Hybrid inflation models

Small field inflation and Hybrid inflation models

GI Test Field A:
〈χ(1) 2〉 ' 3H4

0

8π2m2
χ

(
1− e

−
2m2

χ

3H2
0

N)
GI Test Field B:

〈χ(1) 2〉 =
3H2

0

8π2c

(
1− e−

2
3 cN
)
.

GI Test Field C:

〈χ(1) 2〉 =
H2

0

32π2ξ

(
1− e−8ξN

)
.

GI Inflaton fluctuation:

〈φ(1) 2〉 ' ±
4V 2

0 (1− y) + 3M4φ2
i y
(
4M2

pl (N − Ni ) + φ2
i (1− y)

)
± y(1− y2) M6

4V0

96π2M2M4
pl

(
1± y M2φ2

i
2V0

)2 ,

where we have set y = y(N) = e∓
2M2M2

pl
V0

(N−Ni ).



Small field inflation
Small field inflation model

Figure : Evolution of the mean square quantum fluctuations (in units
of m2

pl) versus the number of e-folds N for the small field inflationary
model. For the inflationary background we have chosen
V0 = 2.6× 10−12m4

pl, M = 0.85× 10−6mpl and φi = 0.3 mpl as
parameters. The mean square gauge invariant inflaton fluctuation
(thick line) dominates over those of gauge invariant test fields
(mχ = 10−2H0 is the solid line, c = 0.1 is the dashed line, ξ = 0.05 is
the dotted line).



Hybrid inflation
Hybrid inflation model

Figure : Evolution of the mean square quantum fluctuations (in units
of m2

pl) versus the number of e-folds N for the hybrid model. For the
inflationary background we have chosen V0 = 2.6× 10−12m4

pl,
M = 1.8× 10−6mpl and φi = 0.3 mpl as parameters. In this case the
mean square of gauge invariant moduli can dominate over the mean
square of gauge invariant inflaton fluctuation (thick line): the
parameters chosen are mχ = 10−2H0 (solid line), c = 0.002 (dashed
line), ξ = 0.05 (dotted line).



Conclusions

Using the field theory results as a guideline, we have shown that the
stochastic equations for the gauge invariant variable associated with
any scalar fluctuations are naturally formulated as a flow in terms of the
number of e-folds N.

We have given some interesting bound on the validity of the test field
approximation and of the cosmological perturbation theory for quadratic
models.

For most of the inflationary models 〈Q(1) 2〉 dominates over 〈Q(1) 2
χ 〉, if

the moduli has a non-negative effective mass.

Hybrid inflationary models can be an exception: 〈Q(1) 2
χ 〉 can dominate

over 〈Q(1) 2〉 on choosing parameters appropriately.

The understanding of inflaton dynamics including metric fluctuations is
more important than the moduli problem in most of the inflationary
models.
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