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Structure of the Lectures (at least in theory)

• Overview and motivation

• Simple blackbody radiation warm-ups

• Formulation of the thermalization problem

Lecture I:
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Figure 3.8: Comparison of the Comptonization and Compton cooling time-scale with the Hubble expansion time-scale.

at lowest order in ✓e = kTe/mec2 and h⌫/mec2. These expressions are per �⌧ = c�TNe�t, which defines the
Thomson optical depth, ⌧. Inserting this into Eq. (3.25), with x = h⌫/kT� we obtain [Exercise 2]
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, (3.28)

which is the famous Kompaneets equation [27]. It can be used to describe the repeated scattering of photons
by thermal electrons in the isotropic medium. The first term in the brackets describes Doppler broadening
and Doppler boosting and the last term accounts for the recoil e↵ect and stimulated recoil. These terms are
especially important for reaching full equilibrium in the limit of many scatterings.

We will discuss various analytic solutions of the Kompaneets equation in Chapter 4. Here, a couple of
words about limitations of this equation. First of all, we assumed that the change in the energy of the photon
by the scattering is small. For hot electrons this is no longer correct and one has to go beyond the lowest orders
in �. This is for example important for the Sunyaev-Zeldovich e↵ect of very hot clusters [21, 35, 3], but this
procedure only converges asymptotically [e.g., 9, 12]. The second limitation is that if the photon distribution
has very sharp features (more narrow than the width of the scattering kernel) then the shape of the scattered
photon distribution is not well represented with the di↵usion approximation. In this case, a scattering kernel
approach can be used to describe the scattering problem [e.g., 36], although e�cient numerical scheme for
many scatterings are cumbersome.



Formulation of the thermalization problem
(double Compton process)
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Figure 4.10: DC correction factor Gm,nr for soft initial photons (ω0 = 10�4) as a function of the electron
temperature θe. Also shown is the full integral approximation (4.40a) and the expansion (4.40b), taking
into account the corrections up to different orders in θe, as indicated respectively.
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Figure 3.11: Enhancement of the DC emissivity due to thermal motions of the electrons. The approximation Eq. (3.49)
works extremely well even to high temperatures. The figure is taken from Chluba et al. [10].72 The double Compton process in mildly relativistic thermal plasmas

0 0.2 0.4 0.6 0.8 1
ω0

0

0.2

0.4

0.6

0.8

1

G
m

numerical result
1. order correction
2. order correction
3. order correction
4. order correction
inverse formula

θe = 0

Figure 4.6: DC correction factor G0
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approximation (4.35), as indicated respectively.

where the correction factor G0
m(�0) following from the direct series expansion is given by

G0
m(�0) = 1 � 21

5
�0 +

357

25
�2

0 � 7618

175
�3

0 +
21498

175
�4

0 . (4.34)

In order to distinguish the DC correction factor in the soft photon limit from H(w), which
applies for the full spectral range, we here introduced the new letter G.

Figure 4.6 shows the numerical result for G0
m(�0) in comparison to the analytic approxima-

tion (4.34), taking into account the corrections up to di�erent orders in �0. The approximation
converges only very slowly and in the highest order considered here breaks down close to
�0 � 0.15. Due to this behavior of the asymptotic expansion there is no significant improve-
ment expected when going to higher orders in �0, but the monotonic decrease of the emission
coe�cient suggest that a functional form G0

m = [1 +
�4

k=1 ak �k
0 ]�1 could lead to a better

performance. Determining the coe�cients ai by comparison with the direct expansion (4.34)
one may obtain an inverse approximation for the DC correction factor

G0,inv
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1
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5 �0 + 84

25 �2
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875 �3
0 + 9663

4375 �4
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As Fig. 4.6 clearly shows, G0,inv
m (�0) provides an excellent description of the numerical result

even up to relativistic energies of the initial photon.
Combining (4.35) with the Gould-formula (4.27) leads to the approximation

H0
em(�0,�2) = HG(w) � G0,inv

m (�0) (4.36)

for the ratio H as defined by equation (4.28). In order to test the performance of this approxima-
tion, we have numerically determined the lowest frequency, �2,crit, at which the approximation
for H deviates by � percent from the full numerical result. In Fig. 4.7 the results for �2,crit are

Figure 3.12: Suppression of the DC emissivity for larger incoming photon energy !0 = h⌫0/mec2. The approximation
Eq. (3.50) works extremely well even to large energies. The figure is taken from Chluba et al. [10].
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Enhancement of DC emission by motion of electrons
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In order to distinguish the DC correction factor in the soft photon limit from H(w), which
applies for the full spectral range, we here introduced the new letter G.

Figure 4.6 shows the numerical result for G0
m(�0) in comparison to the analytic approxima-

tion (4.34), taking into account the corrections up to di�erent orders in �0. The approximation
converges only very slowly and in the highest order considered here breaks down close to
�0 � 0.15. Due to this behavior of the asymptotic expansion there is no significant improve-
ment expected when going to higher orders in �0, but the monotonic decrease of the emission
coe�cient suggest that a functional form G0
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As Fig. 4.6 clearly shows, G0,inv
m (�0) provides an excellent description of the numerical result

even up to relativistic energies of the initial photon.
Combining (4.35) with the Gould-formula (4.27) leads to the approximation

H0
em(�0,�2) = HG(w) � G0,inv

m (�0) (4.36)

for the ratio H as defined by equation (4.28). In order to test the performance of this approxima-
tion, we have numerically determined the lowest frequency, �2,crit, at which the approximation
for H deviates by � percent from the full numerical result. In Fig. 4.7 the results for �2,crit are

Figure 3.12: Suppression of the DC emissivity for larger incoming photon energy !0 = h⌫0/mec2. The approximation
Eq. (3.50) works extremely well even to large energies. The figure is taken from Chluba et al. [10].
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Figure 3.13: Double Compton Gaunt factor for Planckian photons at a temperature ✓� and electrons at temperature
✓e = ⇢ ✓�. Approximation Eq. (3.51) represents the full numerical result extremely well, especially for ✓� ⇡ ✓e. The figure
is taken from Chluba [4].

find the photon production rate to be increased by G(�) ' (1 + �2)/(1 � �2) [10]. Averaging over a relativistic
thermal distribution one finds the enhancement factor

G(✓e) =
[1 + 24✓2e]K0(1/✓e) + 8✓e[1 + ✓2e]K1(1/✓e)

K2(1/✓e)
⇡ 1 + 6✓e + 15✓2e + O(✓3e). (3.49)

The comparison with the numerical result for the DC enhancement factor caused by moving electrons is illus-
trated in Fig. 3.11. The approximation Eq. (3.49) clearly works extremely well even to high temperatures.

If we instead crank up the energy of the incoming (scattering) photon, we expect the DC emission rate
to decrease just like the Compton scattering cross section decreases in the Klein-Nishina regime. In terms of
! = h⌫/mec2 ⌧ 1 one can find the correction factor [10]
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!4 + O(!5)

⇡ 1
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5 ! +
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25!

2 � 2041
875 !

3 + 9663
4375!

4
. (3.50)

The comparison with the numerical result for the DC suppression factor is illustrated in Fig. 3.12. Again the
approximation works very well in particular when using the inverse formula that was deduced by inspecting
the terms of the Taylor series. For comparison, the suppression of the total Compton scattering cross section is
� ' �T(1 � 2!), which shows that the e↵ective suppress of the DC rate is about twice as large.

Obviously, one can also find approximations when both electrons are moving and the energy of the incom-
ing photon increases. Analytic approximation for this case are given in Chluba et al. [10], with enhancement
terms due to the electrons motion fighting the suppression for larger photon energy. To include all e↵ects for
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Gould-formula

The result obtained by Gould [54] can be derived in a similar manner as the Lightman-
approximation (4.24), but without performing a series expansion of (4.8) in terms of �2, i.e.
making a priory no assumption about the energy of the emitted photon or equivalently going
beyond the soft photon approximation. This increases the complexity of the expression for the
di�erential cross section significantly and the intermediate step is therefore omitted here. The
integrations then lead to the Gould-formula for DC emission spectrum of cold electrons and
low energy, monochromatic initial photons

�n2

�t

����
m

em,G

= w HG(w) � �n2

�t

����
m

em,L

, (4.26)

with w � w2 = �2/�0 and

HG(w) =
1 � 3w[1 � w] + 3

2w2[1 � w]2 � w3[1 � w]3

w[1 � w]
. (4.27)

A interpretation of HG(w) can be given as follows: multiplying �tn2|mem,G by �2
2 and dividing by

N0 one obtains the relative change of the number of photons due to DC emission per dw and per
dt, i.e. HG(w) is proportional to the relative photon production rate, �Ṅm

em,G/N0 � HG(w) dw.
In order to compare the numerical results for di�erent initial conditions it is convenient to

define the ratio

H(w) =
1

w

�tn2|mem
�tn2|mem,L

, (4.28)

where �tn2|mem is given by the full Boltzmann emission integral (4.22) and �tn2|mem,L is the
Lightman-approximation (4.24). With this particular definition of H(w) one can rewrite the

Figure 3.14: Gould factor for di↵erent incoming photon energies but ✓e = 0. For larger !0 =
h⌫

mec2 , recoil corrections
become important and the high frequency photon transfers energy to the electrons. The cusp is roughly at w ' 1/(1+2!0).
The figure is taken from Chluba [4].

blackbody photons as source, one again has to perform a Fokker-Planck expansion of the DC collision term.
This becomes quite complicated and details can be found in Chluba [4] and Chluba et al. [10]. A useful ex-
pression that approximates the reduction of the DC emissivity relative to the Lightman approximation with
increasing temperature take the form [4]

Gdc(✓�, ✓e) =
1

1 + 19.739✓� � 5.5797✓e

✓e⇡✓�
#
=

1
1 + 14.16 ✓�

. (3.51)

A comparison with the numerical result is shown in Fig. 3.13, illustrating the performance of the approximation.
It also improves over previous fit given by Svensson [42] given for Wien spectra only, because Eq. (3.51)
includes both stimulated DC emission and di↵erences in the electron and photon temperature.

Beyond the soft photon limit. In the previous paragraph we considered corrections in ✓e and ! = x✓�. But
we still worked in the soft photon limit, ⌫2 ⌧ ⌫ and ⌫ ' ⌫0. Assuming again resting electrons and h⌫ ⌧ mec2,
one can readily give the general expression for all energies of 0  h⌫2  h⌫. The frequency-modulation of the
DC emissivity is captured by the Gould factor3 [18]

Hdc(⌫2/⌫) ⇡
⌫2
⌫

HG

✓⌫2
⌫

◆
(3.52)

where HG(w) = [1 � 3y + 3y2/2 � y3]/y with y = w[1 � w]. In the limit ⌫2/⌫ ! 0, one finds Hdc(x) ! 1 and
similarly for ⌫2/⌫! 1 (due to symmetry around ⌫2/⌫ = 1/2). Again this factor was simply obtained by setting

3Note that HG(w) is 1/2 of F(w) given by Eq. (27) of Gould [18]. The factor of 2 is to avoid double counting of photons.
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Figure 3.15: Gould factor for di↵erent di↵erent temperatures and !0 = 0.05. For increasing ✓e, electrons transfer some
energy to the high frequency photon due to Doppler boosts, leading to scattering correction to the Compton process. The
figure is taken from Chluba [4].

� = 0 in the full DC cross section, expanding to lowest order in ! ⌧ 1 (so that ⌫ ⇡ ⌫0+⌫2) and then performing
all the angle integrals.

In Fig. 3.14, we illustrate the functional shape of the Gould factor. For low incoming photon energy the
shape of Hdc is clearly represented very well with the Gould formula. However, for larger !, corrections
related to the energy redistribution of the scattering photon become important. In this case, ⌫ , ⌫0 + ⌫2, but
some energy is transferred to the initially resting electron. Thus, in particular the range (1 + 2!)�1 . ⌫2/⌫ . 1
shows significant structure. However, at ⌫2 . ⌫/2 the shape of Hdc is very well represented by the Gould
formula and the suppression of the DC emissivity can be captured by G(!) given in Eq. (3.50), so that overall
Hdc ⇡ ⌫2⌫ HG

⇣
⌫2
⌫

⌘
G(!).

Similarly, if we allow the electrons to have non-zero temperature, the factor G(✓e) given in Eq. (3.49)
allows capturing the enhancement of the DC emissivity at low energies. In this case, Doppler boosts from
the electron allow the high frequency photon to gain energy above it initial value (see Fig. 3.16), so that the
high frequency tail of the DC spectrum has a more complicated structure. For the thermalization problem this
additional redistribution can be neglected.

To account for corrections beyond the soft photon limit on the DC emissivity, we have to modify the DC
integral, Idc =

R
x4 f (x)[1 + f (x)] dx, over the incoming photon distribution. We know that photons emitted at

frequency x2 = h⌫2/kT� are produced by incoming photons at frequency x � 2x2 with the stimulated factor
[1 + f (x)]! [1 + f (x � x2)]. The modified DC emission integral, assuming small distortions, is thus

Hdc(x2) ⇡ 1
Idc

Z 1

2x2

x4nPl(x)[1 + nPl(x � x2)]
 x2

x
HG

✓ x2

x

◆�
dx (3.53a)

⇡ e�2x2

"
1 +

3
2

x2 +
29
24

x2
2 +

11
16

x3
2 +

5
12

x4
2

#
. (3.53b)

The approximation (Exercise 4) was given in Chluba & Sunyaev [11] and represents the numerical result very
well. It significantly improves the previous approximation Hdc(x) ⇡ e�x/2 given by Burigana et al. [1].
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where α is the fine structure constant and gdc(x, θ z, θ e) is the ef-
fective DC Gaunt factor. In lowest order of the photon and electron
energies the DC Gaunt factor factorizes (see Chluba 2005 for more
details). Furthermore, if the photon distribution is not too far from
full equilibrium one can approximate gdc(x, θ z, θ e) using a black-
body ambient radiation field and assuming that Te ∼ Tz. In this
case, one has (e.g. see Chluba 2005; Chluba et al. 2007)

gdc(x, θz, θe) ≈ Ipl
4

1 + 14.16 θz

× Hdc(x) , (11)

where Ipl
4 =

�
x4nPl(nPl + 1) dx = 4�4/15 ≈ 25.976. Here we

have included the first-order relativistic correction in the pho-
ton temperature; however, this term only becomes significant at
z � few × 106.

The second factor in equation (11) allows us to go beyond the soft
photon limit, for which x $ 1 was assumed. In lowest order, Hdc(x)
only depends on the ambient photon distribution, but is independent
of the electron temperature. It can be computed using (see Chluba
2005 for more details)

Hdc(x) ≈ 1

Ipl
4

� ∞

2x

x ′4nPl(x ′)[1 + nPl(x ′ − x)]
� x

x ′ HG

� x

x ′

��
dx ′,

(12)

where HG(w) = (1 − 3y + 3y2/2 − y3)/y with y = w(1 − w).
The factor HG(w) was first obtained by Gould (1984) to describe
the corrections to the DC emissivity when going beyond the soft
photon limit but assuming resting electrons.10 In the limit x → 0,
one finds w HG(w) → 1, so that Hdc(x) → 1.

Expression (12) was also used in the work of Burigana et al.
(1991b). There, the approximation Hdc(x) ≈ e−x φ/2 was given.
However, as mentioned above, with the assumptions leading to
equation (12) the electron temperature is irrelevant, and hence one
should set φ → 1. Furthermore, we re-examined the integral and
found that for background photons that follow a blackbody spec-
trum,

H
pl
dc(x) ≈ e−2x

�
1 + 3

2
x + 29

24
x2 + 11

16
x3 + 5

12
x4

�
(13)

provides a much better approximation to the full numerical result
for Hdc (cf. Fig. 1). This approximation was obtained by replacing
nPl(x) ≈ e−x and neglecting the induced term in equation (12). Fur-
thermore, the resulting expression was rescaled to have the correct
limit for x → 0. In particular, for x ) 1 equation (13) captures
the correct scaling Hdc(x) ∼ x4 e−2x . However, since most of the
photons are produced at low frequencies x $ 1 we do not expect
any significant difference because of this improved approximation.
Nevertheless, when using the old approximation we found that at
early times the spectrum is erroneously brought into full equilibrium
at very high frequencies, just by DC emission and absorption.

We note here that if the distortions are not small, then in lowest
order the correction to the DC emission can be accounted for by
replacing nPl with the solution nx in the expression for Ipl

4 . How-
ever, from the observational point of view, it seems unlikely that
distortions of interest ever exceeded the level $nν /nν ∼ 10−3, even
at z ∼ 107. Therefore, the above approximation should be sufficient.
Of course this does not include DC emission from very high energy
photons that are directly related to the energy injection process.
However, in that case the simple approximation used above will

10 Note that HG(w) is 1/2 of F(w) given by equation (27) of Gould (1984).
The factor of 2 is to avoid double counting of photons.
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Figure 1. Effective double Compton correction factor Hdc(x). We com-
pare the result from a full integration of a blackbody spectrum with the
approximation given by equation (13). For comparison the approximation
of Burigana et al. (1991b) is also shown. Close to the maximum of the CMB
blackbody spectrum the differences are ∼20–40 per cent.

anyhow need revision, although the total contribution to the photon
production is still expected to be small.

Bremsstrahlung. At lower redshifts (z � few × 105),
Bremsstrahlung starts to become the main source of soft photons.
One can define the Bremsstrahlung emission coefficient by (cf.
Burigana et al. 1991b; Hu & Silk 1993a)

KBR(x, θe) = α λ3
e

2�
√

6�

θ−7/2
e e−x φ

φ3

�

i

Z2
i Ni gff (Zi, x, θe) . (14)

Here, λe = h/me c is the Compton wavelength of the electron, Zi, Ni

and gff (Zi, x, θ e) are the charge, the number density and the BR
Gaunt factor for a nucleus of the atomic species i, respectively. Var-
ious simple analytical approximations exist (Rybicki & Lightman
1979), but nowadays more accurate fitting formulae, valid over
a wide range of temperatures and frequencies, may be found in
Nozawa, Itoh & Kohyama (1998) and Itoh et al. (2000). In compar-
ison with the expressions summarized in Burigana et al. (1991b),
we find differences at the level of 10–20 per cent for small x.

In the early Universe, only hydrogen and helium contribute to the
BR Gaunt factor, while the other light elements can be neglected.
In the non-relativistic case, the hydrogen and helium Gaunt factors
are approximately equal, i.e. gH,ff ≈ gHe,ff to within a few per cent.
Therefore, assuming that the plasma is still fully ionized, the sum
in equation (14) may be simplified to

�
≈ gH,ff Nb, where Nb is

the baryon number density. However, for per cent accuracy, one
should take the full expressions for gH,ff and gHe,ff into account,
which does not lead to any significant computational burden using
the expressions of Itoh et al. (2000).

Furthermore, at redshifts z � 7000–8000, the plasma enters the
different epochs of recombination. Therefore, the mixture of the
different species (Ne, H I, H II, He I, He II and He III) in the primordial
medium has to be followed. We use the most recent computations of
the recombination process including previously neglected physical
corrections to the recombination dynamics according to Chluba &
Thomas (2011).

C© 2011 The Authors, MNRAS 419, 1294–1314
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Figure 3.16: E↵ective double Compton correction factor Hdc(x). We compare the result from a full integration of a
blackbody spectrum with the approximation given by Eq. (3.53). For comparison, we also show the approximation
Hdc(x) ⇡ e�x/2 given by Burigana et al. [1]. Close to the maximum of the CMB blackbody spectrum the di↵erences are
⇠ 20% � 40% and at high frequencies the expression of Burigana et al. [1] overestimates the DC emission significantly.
The figure is taken from Chluba & Sunyaev [11].

3.4 Final set of evolution equations

We now have all the ingredients together to write down the photon and electron evolution equations. For the
photons we perform one more step by transforming to x = h⌫/kT�, with T� = T0(1+ z), instead of p or ⌫ itself.
This allows us to absorb the redshifting term, �Hp@p f , in Eq. (3.11), so that with d⌧ = �TNec dt we have
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✓2� Idc gdc(Te,T�, x) (3.54b)

ḡ↵(xe) ⇡
8>><
>>:

p
3
⇡ ln
⇣

2.25
xe

⌘
for xe  0.37

1 otherwise
, gdc ⇡

1 + 3
2 x + 29

24 x2 + 11
16 x3 + 5

12 x4

1 + 19.739✓� � 5.5797✓e
. (3.54c)

where f = f (⌧, x), Idc =
R

x4 f (1 + f ) dx ⇡ 4⇡4/15 and Gdc and Hdc were taken from Eq. (3.51) and (3.53b),
respectively. The DC Gaunt factor, gdc, should provide a very good approximation for our purposes. For the
BR Gaunt factors, ḡ↵ , we use fits from Itoh et al. [22] or the above approximation for estimates. We also added
a photon source term, S (⌧, x), although the specific shape depends on the process.

Equation (3.54) needs to be augmented by an evolution equation for the electron temperature. This equation
can be readily derived from Eq. (3.14) adding non-zero collision terms (Exercise 5). It has contributions from
the adiabatic expansion of the Universe, which drives Te / a�2. The adiabatic cooling is counteracted by
Compton heating, which drives the electron temperature always extremely close to the photon temperature
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Structure of the Lectures (at least in theory)

• Overview and motivation

• Simple blackbody radiation warm-ups

• Formulation of the thermalization problem

Lecture I:

• Analytic description of the distortions

• Distortion visibility function

• Fast computation of the distortions

Lecture II:



Analytic solutions and definition of µ and y
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Figure A1. Shape of the CMB spectrum with large chemical potential. For
the considered case, the crossover frequency is at ⌫ ⇡ 158GHz. Number
changing processes at low frequencies were neglected, but would restore
the blackbody shape at ⌫ . 1 GHz.
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APPENDIX A: BOSE-EINSTEIN SPECTRUM FOR FIXED
NUMBER AND ENERGY DENSITY

Assuming that the photon occupation number is given by a Bose-Einstein
spectrum, we can determine the precise shape from the number and energy
density of the distribution. Using the ansatz, n = 1/(ex�+  µ � 1) [� is needed
to fix the correct number density and µ > 0 is constant], we can write

� =

0
BBBBB@

2 Li3(e�µ)
GPl

2

1
CCCCCA

1/3

⇡ 1 � 0.4561µ � 0.137µ2 ln µ, (A1)

where Lin(x) is the polylogarithm. We assumed that the number density of
the photon distribution did not change. With this solution, one can obtain
the correct Bose-Einstein spectrum as a function of x and µ (see Fig. A1).
Fixing the energy density, we find that

1 +
�⇢�
⇢�
=

6 Li4(e�µ)
⇢4GPl

3
⇡ 1 + 0.7140µ + (0.815 + 0.555 ln µ)µ2 (A2)

can be used to determine the value of µ. Evidently, at lowest order one has
µ ⇡ 1.401�⇢�/⇢� , as expected.

One interesting aspect is that for larger values of µ, the zero crossing
of the distortion with respect to the blackbody increases. The crossover fre-
quency is roughly given by ⌫cr ⇡ 124GHz(1� 0.304 µ ln µ), so that even for
very large values of µ ' 0.01 the zero does not change dramatically.

APPENDIX B: ENTROPY OF A NON-EQUILBRIUM
BOSE-EINSTEIN SPECTRUM

In terms of the photon occupation number, n = 1/(ex+  µ � 1), the photon
entropy density can be written as (Landau & Lifshitz 1980)

s� = 8⇡k
 
kT�
hc

!3 Z
x2 [(1 + n) ln(1 + n) � n ln n] dx

= 8⇡k
 
kT�
hc

!3 Z
x2 [ln(1 + n) + n(x +  µ)] dx

=
4
3
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� 8⇡k

3

 
kT�
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x3  µ @xn dx

 µ⌧1
#⇡ 4

3
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� (T�)
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1 + 3

�Te
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� (T�)
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µ1M3

=
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3
3GPl

2
kN� +

⇢
3
⇢Pl
� (T�)
T�

µ1 ⇡ 3.601kN�[1 + 0.5355µ⇤1], (B1)

where we used ⇢Pl
� (T ) = (GPl

3 /GPl
2 )kTNPl

� (T ) ⇡ 2.701kTNPl
� (T ) and the

e↵ective chemical potential µ⇤1 = ̂⇢µ1.
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Figure 4.2: Bose-Einstein spectrum for large chemical potential µ = 0.5 and Ti = T0 = 2.726 K. Only energy was added to
the photon field, but the number of photons was not changed with respect to the initial CMB spectrum. For large chemical
potential, the cross over frequency shifts towards higher frequencies according to ⌫cr ⇡ 124 GHz (1 � 0.304 µ ln µ) ⇡
158 GHz. The figure was taken from Chluba [10].

But how do we define the distortion? To derive the expressions from above, we used

fBE =
1

exe+µ0 � 1
⇡ 1

exe � 1
� G(xe)

xe
µ0 + O(µ2

0). (4.14)

This suggest that � f = �G(xe) µ0/xe could be called the distortion with respect to the blackbody part at
temperature Te and in fact this kind of definition has be used frequently. However, since also the final electron
temperature, Te = T f , depends on µ0, this definition does not separate the distortion cleanly. Motivated by the
fact that Compton scattering conserves photon number, one natural definition is to fix the µ-distortion such thatR

x2M(x) dx = 0. Integrating � f gives
R

x2� f dx = �2µ0
R

x dx/(ex�1) = �2GPl
1 µ0 = �µ0 ⇡2/3 ⇡ �3.2899 µ0,

so that M(x) = G(x)[↵µ � 1/x] with ↵µ = 2GPl
1 /3GPl

2 = ⇡
2/18⇣(3) ⇡ 0.4561 fulfills

R
x2M(x) dx = 0. If we

in addition normalize the relative change of the photon energy density to unity (�⇢M/⇢Pl = 1), we find the
spectral shape of the µ-distortion

M⇤(x) =
3
c

M(x) =
3
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G(x)
"
↵µ �

1
x

#
⇡ 1.401G(x)

"
0.4561 � 1

x

#
⇡
8>><
>>:
� 1.401

x2 for x ⌧ 1
0.6390 x e�x for x � 1.

(4.15)

This implies �I/I ' �T/T ' �µ0/x for x ⌧ 1 and �T/T ' 0.4561 µ0 at x � 1. The frequency dependence
of M(x) is illustrated in Fig. (4.1) in comparison with the y-distortion and spectrum of a temperature shift.
The important feature of a µ-distortion is that it is shifted towards lower frequencies with respect to the y-
distortion. This makes is distinguishable and observing a µ-distortion is a clear indication for a signal created
in the pre-recombination era, deep into the thermal history of our Universe.
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Figure 4.4: Time-evolution of �N⌫ = ⌫2�n for di↵erent values of the y-parameter but neglecting stimulated scattering.
The left panel shows the case, for an initially narrow line which was injected at xe,0 = 10�2, while the right panel shows
the solution for injection at xe,0 = 10�1. In both figures, we present the results as obtained by numerically solving the
Kompaneets equation. In addition, we give the analytic solution according to Zeldovich & Sunyaev [59], Eq. (4.18). The
figure is taken from Chluba & Sunyaev [15].

of the line by the scattering event. Even for Te = 0, recoil-dominated scattering leads to line broadeningD
�⌫2/⌫2

E
' 7

5!
2, which is neglected in the Kompaneets equation, being higher order in ! ⌧ 1. Including this

e↵ect, one has the di↵usion equation [47]
@ f
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�����
CS
⇡ 1
!2
@

@!
!4

 
f +

7
10
!2@! f

!
. (4.22)

Analytic solutions of this equation were discussed by Grebenev & Syunyaev [25] and are relevant for the
scattering of hard X-ray lines by cold electrons.

Finally, when stimulated e↵ects dominate ( f 2 � f and h⌫ � kTe), the solution of the evolution equation
@⌧ f ⇡ !�2@!!4 f 2 is determined by the implicit equation [57, 51]

⌫ = �(s) � 2h
mec2 ⌧ s, (4.23)

with s(⌫, ⌧T) = ⌫2 f (⌫, ⌧) and where �(z) can be found from the initial condition (�(z) ⌘ s�1
0 (z), where s�1

0 (z) is
the inverse function of s(⌫, ⌧) at ⌧ = 0). The non-linear nature of this problem can lead to the appearance of
shock waves in the photon field, e.g. as explained in Zeldovich & Levich [57] and Zeldovich & Sunyaev [60].

4.3.3 Background-induced stimulated scattering

The previous solutions were all derived for the total photon field. For the evolution of spectral distortions, we
are, however, in the situation that the distortion is a small perturbation around the huge CMB blackbody photon
bath. In this case, one can rewrite the Kompaneets equation as

@ f
@⌧

�����
CS
⇡ (✓e � ✓�)YSZ(x) +

✓�

x2
@

@x
x4

"
@

@x
� f + � f (1 + 2 fbb)

#
, (4.24)

where we separated the blackbody (background) and distortion part, f = fbb + � f , and kept only linear order
terms (� f ⌧ 1 and (Te�T�)/T� ⌧ 1). We can see that there are two relevant time-scales: (i) y =

R
(✓e�✓�) d⌧,
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Figure 4.5: Time-evolution of �N⌫ = ⌫2�n for di↵erent values of the y-parameter including the e↵ect of stimulated
scattering in the blackbody ambient radiation field. The left panel shows the case, for an initially narrow line which was
injected at frequency xe,0 = 10�2, while the right panel shows the solution for injection at xe,0 = 10�1. In both figures we
show the results as obtained by numerically solving Kompaneets equation with T� = Te. In addition, we give the analytic
solutions of the linearized problem, Eq. (4.25), according to Eq. (4.26). The figure is taken from Chluba & Sunyaev [15].

which determines how the y-type distortion is sourced by the di↵erence in the electron and photon temperature,
and (ii) y� =

R
✓� d⌧, which determines how the additional distortion, � f , broadens and shifts. As long as

y y� ⌧ 1, these two parts of the problem can be treated separately.
Thus, let us assume that initially we have a low-frequency frequency feature in the much larger blackbody

spectrum with T� ' Te. Then, for fbb ⇡ 1/x � 1, we may write

@� f
@⌧

�����
CS
⇡
✓�

x2
@

@x
x4
"
@

@x
� f +

2
x
� f
#
. (4.25)

This equation describes the evolution of the distortion but including the background-induced stimulated scat-
tering e↵ect. This case is relevant for example for the evolution of hydrogen and helium recombination lines
[45, 16] emitted around z ' 103 in the Rayleigh-Jeans tail of the CMB [15]. Transforming to ⇠ = ln x and
s = x3� f , we find @y� s = @

2
⇠ s � @⇠ s. By setting z = ⇠ � y�, we arrive at @y� s = @

2
z s, which has the solution [15]

f (y�, x) =
1
p

4⇡ye

Z
x03

x3 f (0, x0) e�
(ln[x/x0]�ye)2

4ye
dx0

x0
=

Z
f (0, x0) GB(y�, x0 ! x) dx0, (4.26)

with the Green’s function

GB(y�, x0 ! x) =
x03

x3
e�

(ln[x/x0]�ye)2
4ye

p
4⇡ye x0

. (4.27)

This is very similar to the solution, Eq. (4.19), but with the di↵erent shift of the photon caused by stim-
ulated scattering in the blackbody field. Starting with f (0, x) = A �(x � x0)/x2, it is straightforward to
show that ⇢�(ye) = ⇢�(0) e2ye . The positions of the maximum in Nx = x2 f (ye, x) is x0(ye) = x0 e�ye , while
for Ix = x3 f (ye, x) it is at x0(ye) = x0 eye . Similarly, the FWHM of the photon distribution increases as
�⌫/⌫ = 2eye sinh(2

p
ye ln 2) ' 4

p
ye ln 2. Overall this means that the blackbody-induced stimulated scattering

e↵ect slows down the motion of photons towards higher energies. The photon distribution still gains energy
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Figure 4.6: Dependence of the y-parameters, y� and ye, on redshift. After recombination the y-parameters drop strongly
since the number of free electrons decreases exponentially. At late times, electrons drop out of equilibrium with the
photons so that ye < y�. Around zK = 5 ⇥ 104, we have ye ' y� ' 0.1. The line-broadening, �⌫/⌫ ' 2

p
y� ln 2, is also

illustrated. After recombination it becomes much smaller than �⌫/⌫ ' 10�3.

but only �⇢�/⇢� ' e2ye instead of �⇢�/⇢� ' e4ye when neglecting stimulated scattering. The line-broadening
caused by the Doppler e↵ect is similar to the case without induced scattering. For Nx = x2 f , this is illustrated
in Fig. 4.5. In this case, photons move towards lower frequencies rather than higher.

E�ciency of redistribution. At late times, redistribution of photons in energy by Compton scattering be-
comes very ine�cient. To quantify this statement a little more, we can compute the scattering y-parameter,
y� =

R
✓� d⌧. At high redshifts (z & 104), it scales like

y� =
Z z

0
✓�
�TNec

H(1 + z)
dz ⇡ �TNH(1 + 2 fHe)c

2H0
p
⌦r

kT0

mec2 (1 + z)2 ⇡ 4.84 ⇥ 10�11(1 + z)2. (4.28)

This implies that around z ' 1.4 ⇥ 105 the y-parameter becomes smaller than unity. The dependence of y�
on redshift is illustrated in Fig. 4.6. It is clear that after recombination redistribution by scattering is already
negligible. The amount of Doppler broadening, however, still reaches ' 1%� 10% between z ' 103 � 104. For
the calculation of the helium recombination lines it is thus important [45].

The above analysis shows that for scenarios with late photon production, one can practically neglect Comp-
ton scattering at z  103, unless the initial photon energy is very large so that recoil will become significant.
In this case, the largest e↵ect will manifest itself as heating of the electrons. At redshifts z ' 103 � 5 ⇥ 104,
one can apply the analytic solutions discussed above to get an estimate for the distortion, while at z & 5 ⇥ 104

the approximation, Eq. (4.16b), for µ, should become applicable, although we still have to include the e↵ect of
photon production on the final amplitude of µ.
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Figure 4.7: Absorption optical depth for BR at di↵erent redshifts and frequencies x. At low frequencies, the rough scaling
is ⌧↵ ' x�2. For x ' 10�4, the Universe becomes transparent (⌧↵ ' 1) around recombination. For x ' 10�3 this transition
happens around z ' 1700 and for x ' 0.01 it is z ' 105.

4.4 Evolution under free-free absorption only

As we just explained, after recombination Compton scattering can be neglected. In this case, the photon
distribution only evolves according to BR, since even DC is already ine�cient. The kinetic equation for the
photons thus reads

@ f
@⌧
⇡ KBR e�xe

x3
e

⇥
1 � f (exe � 1)

⇤
+ S (⌧, x), (4.29)

where we included a possible photon source term, S (⌧, x). The change of the electron temperature by BR
emission is very small and can be neglected. Let us also neglect the di↵erence of the photon and electron
temperature, so that the evolution equation for a distortion to the CMB blackbody becomes

@� f
@⌧
⇡ �KBR(⌧, x)(1 � e�x)

x3 � f + S (⌧, x). (4.30)

Between z = 0 and zi, this equation has the simple solution

� f (x, 0) ⇡ � f (x, zi) e�⌧↵ (x,zi) +

Z zi

0
e�⌧↵ (x,z0) S̃ (z0, x) dz (4.31)

⌧↵(x, z) =
Z z

0

KBR(z, x)(1 � e�x)
x3

�TNec dz
H(1 + z)

, (4.32)

where we introduced the new source function, S̃ (z, x), with respect to redshift. The free-free absorption optical
depth can be calculated using the result from CosmoRec for the ionization history. We illustrate the result in
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Figure 4.8: Critical frequency, xc as a function of z. Photon transport is ine�cient below z ' 2 ⇥ 105 so that the
distortion visibility function quickly approaches unity. DC temperature corrections become noticeable at z & 106. The
approximations are from Eq. (4.38) and (4.39). The figure is taken from Chluba [10].

higher redshifts (Fig. 4.8). To percent precision, the total critical frequency is x2
c ⇡ (xDC

c )2 + (xBR
c )2 [27]. Also,

by comparing the redshift dependence of the DC and BR critical frequency, we can see that neglecting DC
strongly underestimates the thermalization e�ciency.

Approximate photon production term and solution for µ0(t). We now can compute the photon production
term, Eq. (4.35), using the solution µ(t, x) ⇡ µ0(t) e�xc(t)/x. It is straightforward to show (Exercise 2) that

d ln a4N�
d⌧

⇡
✓�xc

GPl
2
µ0(t). (4.40)

Inserting this into Eq. (4.33), and using Eq. (4.34), we find

dµ0

d⌧
⇡ �⇢

Q̇⇤e
⇢�
� �N ✓�xc µ0

�⇢ = 3/c ⇡ 1.401, �N = 4/(GPl
2 

c) ⇡ 0.7769, (4.41)

where c ⇡ 2.1419. Then, by introducing the thermalization optical depth

⌧µ(z) ⇡ �N

Z z

0
✓�xc
�TNec dz0

H(1 + z0)
, (4.42)

and assuming that there is no initial distortion at very early times, we can finally write

µ0(z) ⇡ 1.401
Z 1

z

Q̇⇤e
⇢�

e�⌧µ(z0,z) dz0

H(1 + z0)
(4.43)

with ⌧µ(z, z0) = ⌧µ(z) � ⌧µ(z0). The scaling of ⌧µ with redshift depends on the photon production process. For
any given e↵ective energy release rate, Q̇⇤e, one can thus directly estimate the final amplitude of the µ-distortion.

x

DC
c ⇡ 8.60⇥ 10�3


1 + z

2⇥ 106

�1/2
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5/2
⌘

zdc ⇡ 1.98⇥ 106

zbr ⇡ 5.27⇥ 106
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At this point it is 100% at all time!!!

We also need to include photon 
production to have thermalization!
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(Bond, Les Houches 
Lectures, 1996)
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Very simple way to estimate 
the spectral distortion for a 
given energy release history!


