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The effective action: theory space

Effective field theory represents the pinnacle of our understanding
of what quantum field theories really are. Central object of
interest is the effective action [1]. Ingredients are:

I Symmetries.
I Degrees of freedom on which these are represented1.
I A desired accuracy (order) to which we would like to

compute.
I e.g. Lorentz invariant theory w/ shift symmetric scalar
Leff [ϕ] = − 1

2
(∂ϕ)2 + c1

Λ4 (∂ϕ)4 + c2
Λ8 (∂ϕ)6 + c3

Λ8 (∂ϕ)2�(∂ϕ)2 + ...

I The {ci} are the so called Wilson coefficients, fixed by a finite
number of observations at a particular scale µ .

1Either linearly or non-linearly
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The effective action: theory space

The effective action is not a fundamental object. It is merely a
bootstrap which allows us to compute physical observables. These
could be

I S-matrix elements2 between (asymptotic) physical states
→ amplitudes, cross sections...

I (finite time) correlation functions.
I ... Sometimes the only way to define a theory.
I If you started with knowledge of the UV theory, in principle:

e iSeff (`,Λ) :=
∫
DhΛ e

iS(`,h)

I In practice, we identify the low energy symmetries and d.o.f.’s
of the theory, and write down all consistent operators...

I Any particular EFT is a point in ‘theory space’ (the space
spanned by a basis of such operators).

I Classify them according to their operator ‘dimension’ ∆ in
d spacetime dimensions:

I Relevant operators: ∆ < d

Marginal operators: ∆ = d

Irrelevant operators: ∆ > d
2Does not always exist
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Relevant and irrelevant operators

Why this terminology? Consider first, the action for a free scalar
field theory in d-dimensions [2]:

I S = − 1
2

∫
ddx

[
(∂ϕ)2 + m2ϕ2

]
I [...] := mass dimension of a particular quantity (natural units):

[ϕ] = (d − 2)/2; [m2] = 2

I Objects of interest: Gn(x1, ..., xn) := 〈ϕ(x1)...ϕ(xn)〉S
I Under the rescaling x = λx ′, ϕ(x) = λ(2−d)/2ϕ′(x ′)

S ′ = − 1
2

∫
ddx ′

[
(∂′ϕ′)2 + m2λ2ϕ′2

]
I Correlation functions rescale as

〈ϕ(λx1)...ϕ(λxn)〉S = λn(2−d)/2〈ϕ′(x1)...ϕ′(xn)〉S′
I Adding interactions g4

ϕ4

4!
+ g6

ϕ6

6!
; [g4] = 0, [g6] = −2

S ′Λ′ = −
∫
ddx ′

[
1
2
(∂′ϕ′)2 + m2λ2

2
ϕ′2 + g4

ϕ′4

4!
+ g6

ϕ′6

λ26!

]
I N.B. Implicitly, cutoff Λ′ = λΛ . See that in the limit λ→∞ ,
ϕ6 term vanishes as 1/λ2 , hence its ‘irrelevance’.

I Integrating out modes w/ Λ
λ
< p < Λ restores cutoff back to

Λ – results in modifications to all couplings in theory space
previously defined for S at Λ : RG flow (the hard part).
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Relevant and irrelevant operators

Typically, we are interested in computing observables at low
energies far away from the scale at which ‘new physics’ becomes
relevant and where the effective description breaks down [2].

I However, low energy does not mean zero energy.

I e.g. consider pion dynamics at 1GeV . N.B. MW ∼ 80GeV –
in the parent theory:

I Therefore the difference in scales λ = 80 .

I ϕ6 operator gives 1/λ2 ∼ 1/802 corrections,ϕ8 → 1/λ4 ∼ 1/804
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The effective prescription

Therefore before diving into the full formalism, from dimensional
analysis alone we can identify the outline of the prescription one
has to follow:

I From the free part of the action, determine the canonical
dimension of the field.

I Determine the mass dimension of all couplings.

I Coupling constants of dimension δ scale as λδ .

I Relevant/ marginal/ irrelevant operators have couplings with
δ less than/ equal to/ greater than d , the number of
spacetime dimensions.

I Accuracy up to order 1/λp requires us to include all operators
w/ dimension ∆ ≤ d + p , i.e. with couplings w/ δ ≥ −p .
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The renormalization group

Recall that the main objects of interest are n-point correlation
functions:

I Gn(x1, ..., xn) := 〈ϕ(x1)...ϕ(xn)〉S
I Consider an interacting theory regulated by a cutoff Λ

SΛ = −
∫
ddx

[
1
2
(∂ϕ)2 + m2

2
ϕ2 + g4

ϕ4

4!
+ g6

ϕ6

6!

]
Under co-ordinate rescaling x = λx ′

S ′Λ′ = −
∫
ddx ′

[
1
2
(∂′ϕ′)2 + m2λ2

2
ϕ′2 + g4

ϕ′4

4!
+ g6

ϕ′6

λ26!

]
N.B. cutoff also rescaled to Λ′ = λΛ .

I Correlation functions rescale as

〈ϕ(λx1)...ϕ(λxn)〉S,Λ = λn(2−d)/2〈ϕ′(x1)...ϕ′(xn)〉S′,Λ′

Gn({λx};m2, g4, g6; Λ) = λn(2−d)/2Gn({x};λ2m2, g4, g6λ
−2;λΛ)

I LHS is the desired correlation function, to understand its IR
behaviour, need to compute RHS for λΛ→ Λ .

I Doing so, has effectively ‘coarse grained’ the system in
momentum space (Wilson)– the analogue of Kadanoff’s
position space (block spin) coarse graining.
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The renormalization group

We know that no physical quantity can depend on Λ (more
physically, the regularization scheme).

I Therefore: [
Λ ∂
∂Λ

+ βi
∂
∂ci

+ nγϕ
]
Gn = 0

I ... where the {ci} are the couplings of the theory, and where
we have merely applied the chain rule–

βj({ci},Λ) := Λ
∂cj
∂Λ

; γϕ({ci},Λ) = Λ ∂ϕ
∂Λ

I γϕ is the so called ‘anomalous dimension’ of the field ϕ , and
arises from wave-function renormalization.

I Solving these coupled non-linear PDE’s– the ‘renormalization
group equations’ is the hard labour of perturbative QFT!

I Formally, given {cj(Λ)} that solve βj = Λ
∂cj
∂Λ

Gn({x}, ci (Λ1),Λ1) = e
−n

∫ Λ2
Λ1
γϕ(Λ)dlogΛ

Gn({x}, ci (Λ2),Λ2)
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The renormalization group

Disclaimer:

Although the present discussion is organized around Wil-
son’s original idea of a hard momentum space cutoff Λ , in
practice it is much more useful to work with a regularization
scheme that preserves as many symmetries of the original
Lagrangian as possible (gauge, diff, etc). For these and
other reasons (that will become clear later) we will subse-
quently use ‘dimensional regularization’.
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The renormalization group

There are privileged points in theory space where βj [ci (Λ)] = 0 ;
the so called RG fixed points.

I These can either be stable, or unstable and exist either in the
UV or the IR.

I QFT in its most general terms, is the study of RG flows– how
theories evolve from the UV to the IR [3].

(Figure from Gubser and Sondhi; arXiv:hep-th/0006119)
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The renormalization group

I Recalling the scaling relation

Gn({λx}; ci ; Λ) = λn(2−d)/2Gn({x};λδi ci (Λ);λΛ)

together with the formal solution

Gn({x}, ci (Λ1),Λ1) = e
−n

∫ Λ2
Λ1
γϕ(Λ)dlogΛ

Gn({x}, ci (Λ2),Λ2)→
Gn({λx}, ci (Λ),Λ) = λn(2−d)/2e−n

∫ Λ/λ
Λ

γϕ(Λ̃)dlogΛ̃Gn({x}, λδi ci (Λ/λ),Λ)

I Imagine a theory w/ a dimensionless coupling g for which ∃
fixed point: β(g∗) = 0 : e.g. SU(Nc) YM w/ Nf flavours

β(g) = −β0
g3

16π2 + β1
g5

(16π2)2 + ...

β0 = 11
3
Nc − 2

3
Nf ; β1 ∼ O(N2

c ,NcNf )

I Fixed point at g 2
∗ = 16π2 β0

β1

I For all other operators (e.g. four-Fermion contact interaction)

Λ ∂ci
∂Λ

= γ̃i (g) g2(Λ)

16π2 ci (Λ) = γ̃∗i
g2
∗

16π2 ci (Λ)→ ci (Λ1)
ci (Λ2)

=
(

Λ1
Λ2

)γ̃∗i
exp

(
−
∫ Λ1

Λ2
γ∗ϕd logΛ

)
=
(

Λ1
Λ2

)−γ∗
I So that:

Gn({λx}, ci (Λ),Λ) = λn(2−d)/2λnγ∗ϕGn

(
{x}, λδi−γ̃

∗
i ci (Λ/λ),Λ

)
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RG fixed points + EFT prescription

This equation shows scale invariance at the IR fixed point:

I Gn ({λx}, ci (Λ),Λ) = λn(2−d)/2λnγ∗ϕGn

(
{x}, λδi−γ̃

∗
i ci (Λ/λ),Λ

)
I ... but with quantum operators with dimensions that differ

from their classical scaling dimensions.

I Operators now acquire an ‘anomalous dimension’
∆i = d −∆0

i + γ∗i

I Weakly coupled QFT’s: quantum corrections can at most
turn marginal operators into relevant, or irrelevant operators
e.g. triviality of λϕ4 in D=4.

I Must work from the outset with a good set of variables to
describe dynamics s.t. anomalous dimensions are small...

I Otherwise one loses track of what the true d.’s.o.f. are!
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Classical vs quantum degrees of freedom

Anomalous dimensions could be large. Classical degrees of
freedom, as identified by the classical action need not bear any
resemblance to the true (e.g. weakly coupled) degrees of freedom
of the quantum theory.

I e.g. Pions– a composite operator of the form [ψ̄ψ] = 3 is
expected to behave as a scalar ([ϕ] = 1 ) at low energies. i.e.
γ∗ = −2 .

I i.e. pions from QCD not practical. However, pions from the
chiral Lagrangian is fine (it’s a weakly coupled theory).
Moral: pick your d.o.f.’s wisely!

I Q) what do the following theories in 2d have to do with each
other?
L = 1

2
∂µθ∂

µθ + α
β2 (cos(βθ)− 1) (sine-Gordon)

L = ψ̄(i /∂ −m)ψ − g
2
ψ̄γµψψ̄γµψ (Thirring)

I A) They’re the same theory!
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Classical vs quantum degrees of freedom

L = 1
2
∂µθ∂

µθ + α
β2 (cos(βθ)− 1) (sine-Gordon)

L = ψ̄(i /∂ −m)ψ − g
2
ψ̄γµψψ̄γµψ (Thirring)

I sine-Gordon model has soliton solutions w/ [4] Esol = 8
√
α

β2 .

I Solitons annihilate w/ antisolitons (w.r.t. topological charge)

I Multi-soliton solutions exhibit Pauli exclusion.

I cf. [4] Conjecture (Skyrme, 1961): Thirring fermions ≡
Sine-Gordon solitons.

I Coleman (1975): operator equivalence of

Zmψ̄ 1∓γ5

2
ψ ↔ − α

β2 e
±iθ

provided we identify
β2

4π
= 1

1+g/π

I Phenomenon known as (Abelian) bosonization.

I Strongly coupled sine-Gordon model w/ β2 ≈ 4π maps onto
weakly coupled Thirring model w/ g ≈ 0 . Either work with
strongly interacting bosonic theory w/ large anomalous
dimensions, or weakly coupled fermionic theory w/ small
anomalous dimensions.
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Picking the right operator basis

Related to the issue of identifying the right degrees of freedom to
describe the dynamics is the issue of operator basis– a set of
independent operators whose linear combinations span theory
space.

I Field redefinitions renders certain operators ‘redundant’.

I Field redefinitions ↔ coordinate transformations.

I Underpinning this is the S-matrix ‘Equivalence Theorem’.

I Any invertible field redefinition gives identical on shell
S-matrix elements, even if general correlation functions will
be different.

I Also generalizes to finite time ‘in-in’ matrix elements.

I Proved using the LSZ formula. Simple proof at tree-level
presented by Coleman, Wess and Zumino [5].
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The Equivalence Theorem

Consider a Lagrangian of the form:

L[ϕ] = L0[ϕ] + L1[ϕ]

I with L0[ϕ] the free part that defines the propagator and
L1[ϕ] containing all other operators.

I Consider ϕ a non-linear but local function of some other
variable χ , s.t. ϕ = χF [χ], F [0] = 1 .

I In terms of χ , we again make the separation

L[χF [χ]] := L0[χ] + L2[χ]

N.B. L0 is the same function in both cases.

I Now compare correlation functions computed for the original
Lagrangian with those of L′[ϕ] = L0[ϕ] + L2[ϕ]

I This new theory has the same propagators, but completely
different interactions.

I Equivalence Theorem: on-shell S-matrix elements computed
for L are the same as those for L′



The Effective Action–
what it is, what it

isn’t.

Subodh P. Patil

Introduction

Effective Actions

Physical D’s.O.F.

Classical vs Quantum

Operator Basis

Symmetries

Non-linear realizations
of symmetries

The prescription

The EFT prescription

Bibliography

The Equivalence Theorem

I Proof [5]: Given any Lagrangian L[ϕ] , define:

L[ϕ, a] := a−2L[aϕ]

I Consider a connected Feynman diagram with E/I/V external/
internal lines/ vertices, respectively.

I Each vertex w/ Ni lines attached to it has Ni − 2 powers of a .
Hence, each diagram carries P powers of a defined as

P =
∑V

i=1(Ni − 2)

I However a line is either internal (connecting two vertices) or
external, so

∑V
i=1 Ni = E + 2I

I So that P = E + 2I − 2V

I However, the number of loops L satisfies L = I − V + 1 , so
that P = E + 2L− 2 = E − 2 at tree level.

I Now using ϕ = χF [aχ] , we have

L[χF [aχ], a] = a−2L[aχF [aχ]]

I Connection between power of a and the number of lines
attached to each vertex the same. S-matrices calculated from
the two Lagrangians using exact solutions are equal, therefore
all coefficients of powers of a must be equal too.
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Redundant operators

One can use this freedom to field redefine to eliminate many
operators otherwise allowed by the symmetries of the problem [1].

I Recall Lorentz invariant theory w/ shift symmetric scalar:

Leff [ϕ] = − 1
2
(∂ϕ)2 + c1

Λ4 (∂ϕ)4 + c2
Λ8 (∂ϕ)6 + c3

Λ8 (∂ϕ)2�(∂ϕ)2 + ...

I What about c̃
Λ2 �ϕ�ϕ or c̃

Λ2 ∂µϕ�∂
µϕ terms?

I Clearly in flat space3, they differ by an integration by parts.

I Under field redefinition ϕ→ ϕ+ κ
Λ2 �ϕ , variation of the

quadratic part of the action gives

∆L = κ
Λ2 �ϕ�ϕ

I Setting κ = −c̃ allows us to eliminate the fist term.

I Higher order terms modified. Making subsequent field
redefinitions with higher powers of ϕ do not affect lower order
terms with redundant operators eliminated.

I Can proceed order by order to eliminate all redundant
operators to obtain an operator basis, whose coefficients
parametrize theory space.

3argument generalizes straightforwardly to curved backgrounds
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Non-linearly realized symmetries

When we want to write down a basis of operators consistent with
the symmetries of the problem, one could either realize the
symmetries linearly, or non-linearly [6].

I e.g. consider an N dimensional vector field φa (w/ a flat field
space metric) s.t. φaφa = 1 . A theory with linearly realized
O(N) invariance is given by [7]:

L = − 1
2
∂µφ

a∂µφa + λ (φaφa − 1)

with λ , a Lagrange multiplier enforcing φaφa = 1 .

I Consider now the fact that any vector φa can be represented
as φa(x) = G a

b (x)ub

where e.g. ua = (1, 0, ..., 0) is some fixed vector of norm one,
and G a

b (x) is a linear representation of any element of SO(N) .

I Little group of u is SO(N − 1) . Demonstrates isomorphism
between the coset space O(N)/O(N − 1) and SN−1 .
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Non-linear realizations of symmetries

But what if we only wanted to write down independent degrees of
freedom?

I Writing φa(x) = (σ(x), πα(x))

with πα(x) an N − 1 dimensional vector.
I The condition φaφa = 1 implies

σ(x) = (1− παπα)1/2

I Decompose the generators of O(N) into the generators of
O(N − 1) and the complimentary set. The generators of
O(N − 1) act linearly on πα . The complimentary generators
act as δπα = ωα(1− π2(x))1/2

δσ = δ(1− π2(x))1/2 = −ωαπα(x)

where the ωa are the infinitesimal parameters of the
transformation.

I L = − 1
2
Gαβ(π)∂µπ

α∂µπβ ; Gab = δαβ +
παπβ
1−π2

I Symmetry is non-linearly realized. Operators of different order
mix under this transformation. Can force non-trivial relations
between them (e.g. consistency relations for comoving
curvature mode R in FRW cosmology).
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The EFT prescription

I Think about the problem at hand. Consider what the most
physically relevant d’s.o.f. are at Ec the energy scale of
interest.

I Figure out how the linear/non-linear realization of the
symmetry of the theory represents on operators.

I Pick a basis of (non-redundant) operators.

I Write down all terms consistent with realization of
symmetries in this basis, each term parametrized by an
independent Wilson coefficient.

I Decide upon the accuracy to which you want to compute.

I If λ is the ratio Λ/Ec , then for accuracy up to O(1/λk) ,
include all operators with dimension ∆ ≤ d + k .

I Fix the Wilson coefficient for each operator up to
∆ ≤ d + k by a finite number of measurements
(renormalization conditions) at some scale µ .

I Compute anomalous dimensions, compute RG flow of all
couplings of operators w/ ∆ ≤ d + k to Ec .
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