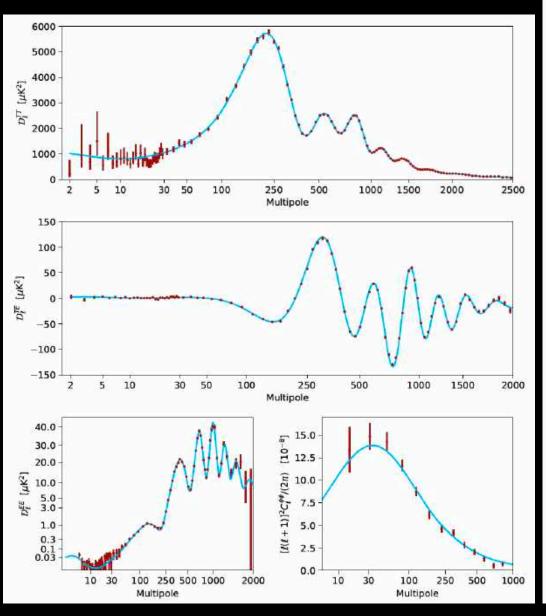
Are We Ready for Precision Cosmology?

General Relativistic Effects and Gauge-Invariant Formalism

Jaiyul Yoo

CENTER for Theoretical Astrophysics and Cosmology
Institutes for Computational Science & Physics, University of Zürich

24 January 2020


I. PRECISION COSMOLOGY:

Past, Today, and Future

I. PRECISION COSMOLOGY: PAST, TODAY, and FUTURE

• Planck collaboration 2018:

precision measurements!

Parameter	Planck alone	Planck + BAO
$\Omega_{\rm b}h^2$	0.02237 ± 0.00015	0.02242 ± 0.00014
$\Omega_{\rm c}h^2$	0.1200 ± 0.0012	0.11933 ± 0.00091
$100\theta_{\mathrm{MC}}$	1.04092 ± 0.00031	1.04101 ± 0.00029
τ	0.0544 ± 0.0073	0.0561 ± 0.0071
$ln(10^{10}A_s)$	3.044 ± 0.014	3.047 ± 0.014
$n_{\rm s}$	0.9649 ± 0.0042	0.9665 ± 0.0038
H_0	67.36 ± 0.54	67.66 ± 0.42
Ω_{Λ}	0.6847 ± 0.0073	0.6889 ± 0.0056
$\Omega_{\rm m}$	0.3153 ± 0.0073	0.3111 ± 0.0056
$\Omega_{\rm m}h^2\ldots\ldots$	0.1430 ± 0.0011	0.14240 ± 0.00087
$\Omega_{\rm m}h^3\ldots\ldots$	0.09633 ± 0.00030	0.09635 ± 0.00030
$\sigma_8 \dots \dots$	0.8111 ± 0.0060	0.8102 ± 0.0060
$\sigma_8(\Omega_{\rm m}/0.3)^{0.5}$	0.832 ± 0.013	0.825 ± 0.011
z _{re}	7.67 ± 0.73	7.82 ± 0.71
Age[Gyr]	13.797 ± 0.023	13.787 ± 0.020
$r_*[Mpc] \dots$	144.43 ± 0.26	144.57 ± 0.22
$100\theta_*$	1.04110 ± 0.00031	1.04119 ± 0.00029
$r_{\rm drag}[{ m Mpc}]$	147.09 ± 0.26	147.57 ± 0.22
Zeq	3402 ± 26	3387 ± 21
$k_{\rm eq}[{ m Mpc}^{-1}]\dots$	0.010384 ± 0.000081	0.010339 ± 0.000063
Ω_K	-0.0096 ± 0.0061	0.0007 ± 0.0019
Σm_{ν} [eV]	< 0.241	< 0.120
N _{eff}	$2.89^{+0.36}_{-0.38}$	$2.99^{+0.34}_{-0.33}$
$r_{0.002}$	< 0.101	< 0.106

Standard Model of Cosmology

- I. inflationary epoch in early Universe
 - seed fluctuations for formation of galaxies & life
- II. matter & energy content of Universe today
 - exotic particles: dark matter (22%)
 - repulsive gravity: dark energy (74%)
 - ordinary matter: only 4%!
- III. general relativity: Einstein
 - describe evolution of matter & energy

- I. inflationary epoch: Not Understood
 - what generates initial perturbations?
- II. dark sector (96%): Not Understood
 - dark matter (22%) and dark energy (74%)
 - what are the nature of dark sector?
 - ordinary matter (4%): Understood, check!
- III. Einstein's general relativity: Not Sure
 - valid on cosmological scales? modified gravity?
 - well tested in Solar System

- I. inflationary epoch: Not Understood
 - what generates initial perturbations?

- II. dark sector (96%): Not Understood
 - dark matter (22%) and dark energy (74%)
 - what are the nature of dark sector?
 - ordinary matter (4%): Understood, check!
- III. Einstein's general relativity: Not Sure
 - valid on cosmological scales? modified gravity?
 - well tested in Solar System

- I. inflationary epoch: Not Understood
 - what generates initial perturbations?

- II. dark sector (96%): Not Understood
 - dark matter (22%) and dark energy
 - what are the nature of dark sector?
 - ordinary matter (4%): Understood,
- III. Einstein's general relativity: Not Su
 - valid on cosmological scales? modified gravity?
 - well tested in Solar System

It is the most compelling of all outstanding problems in physical science!

Dark Energy Task Force 2006

The Birth of the Universe: one of the big issues for 21st century particle physicists

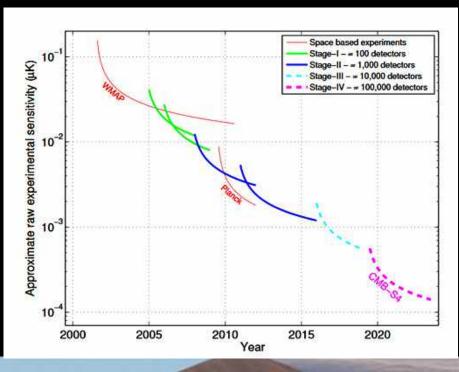
Quantum Universe Report 2010

Large-Scale Surveys

- current and future ground-based surveys:
 - Baryonic Oscillation Spectroscopic Survey
 - Dark Energy Survey
 - Dark Energy Spectroscopic Instrument
 - Large Synoptic Survey Telescope
- future space missions:
 - Euclid
 - Wide-Field Infrared Survey Telescope
- <u>sub-percent level</u> precision measurements!

More Ambitious Surveys

- future radio surveys:
 - Murchison Wide-field Array
 Phase-II
 - Square Kilometer Array



- redshifted 21cm lines:
 - from hyperfine transition in neutral hydrogen
 - probe redshift 10 ~ 30
 - more statistical power than CMB

Even more precise measurements!

CMB Stage IV (S4)

- next-generation CMB experiment:
 - dedicated telescopes
 - South Pole & Chile Atacama
 - and more telescopes?
 - inflation r < 0.002
 - neutrino mass $\sum m_{\nu}$
 - relativistic species $\sigma(N_{\rm eff}) = 0.02$

Challenges

- precision measurements demand:
 - substantial advances in theoretical modeling of cosmological observables
- standard theoretical descriptions:
 - <u>sufficiently accurate</u> to describe precision measurements? <u>answer: No!</u>
 - galaxy clustering, weak lensing, Boltzmann eq. etc
 - <u>incomplete</u> and <u>limited</u> to linear theory due to gauge dependence & missing observer specification

Research Program

- <u>re-write</u> theoretical descriptions of all cosmological observables:
 - in proper relativistic framework
 - check gauge-invariance
 - work out impact of missing physics on observables
 - relativistic effects as novel probes of cosmology
 - work in progress!

Research Program

- <u>re-write</u> theoretical descriptions of all cosmological observables:
 - in proper relativistic framework
 - check gauge-invariance
 - work out impact of missing physics on observables
 - relativistic effects as novel probes of cosmology
 - work in progress!

warning:

They work well!

BUT not quite so at the percent level or better

Team at Zürich

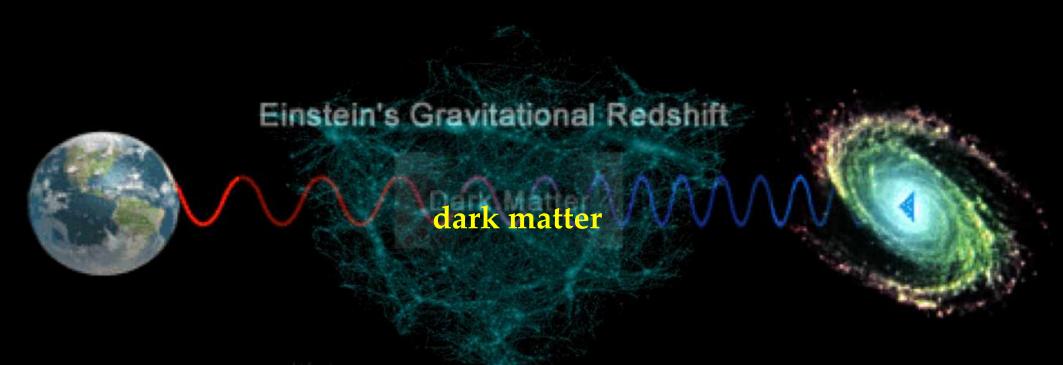
- postdoctoral fellows:
 - Yves Dirian
 - Ermis Mitsou
 - Enea DiDio

- PhD students:
 - Nastassia Grimm
 - Sandra Baumgartner

CONTENTS

- Cosmology: Past & Future
- What is Wrong in Standard Cosmology?
- **III.** How Can We Fix It?
- V. Do We have to Care at all?
- **V.** Summary and Future Work

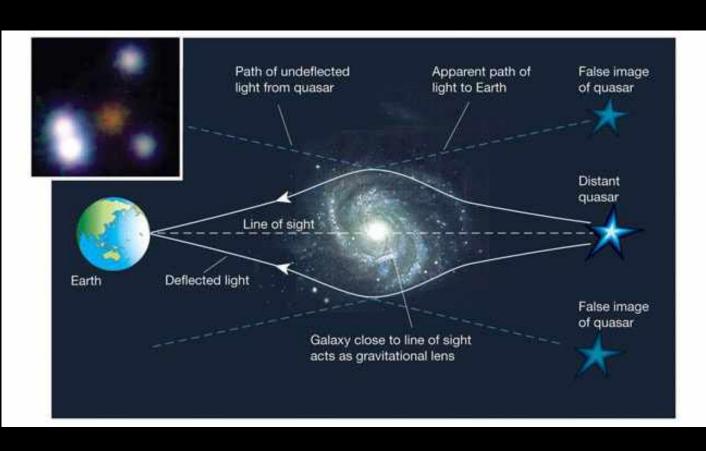
II. WHAT IS WRONG IN STD COSMOLOGY?

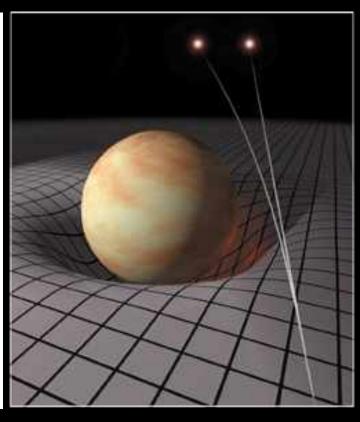

General Relativistic Effects & Gauge Invariance

(a) Relativistic Effects

- all cosmological observations by measuring photons:
 - well known, but often ignored!
 - null geodesic for light path (vs instantaneous prop.)
 - light cone observation (vs same time volume)
- missing relativistic effects:
 - gravitational redshift, lensing, frame distortion, etc
 - photon propagation over cosmological scales
 - explicit accounts of all needed

Gravitational Redshift

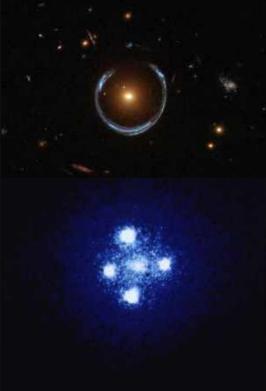

- photon energy is affected
- due to gravity at source and observer (Sachs-Wolfe)
- also change in gravity during propagation (iSW)



$$1 + z_{\text{obs}} = (1+z) \left[1 + V(z) - V(0) - \psi(z) + \psi(0) - \int_0^r dr' \ (\dot{\psi} - \dot{\phi}) \right].$$

Gravitational Lensing

- observed angular position is not real position
- matter distribution deflect light propagation


$$\hat{n}_{\text{obs}} = (\theta_{\text{obs}}, \ \phi_{\text{obs}}) = \hat{n}_{\text{true}} + \delta n, \quad \delta n = (\delta \theta, \ \delta \phi)$$

$$\delta_g \propto \kappa$$

Gravitational Lensing

- observed angular position is not real position
- matter distribution deflect light propagation

(b) Who Measures What?

- cosmological observables:
 - photons: frequency, polarization, flux, position
 - derivables: redshift, shape, luminosity, number density, lensing shear, etc.
- observers (us) in rest frame (Minkowski):
 - observer dependent, but so trivial, often ignored!
 - (FRW) coordinate independent! (diffeo. invariant)
 - scalar under diffeomorphism: FRW vectors, tensors, all against our local basis
 - same for physical quantities in the source rest frame

Symmetries


- general relativity (in cosmology):
 - diffeomorphism symmetry: any coordinates work
 - FRW metric with any gauge choice
 - cosmological observables: gauge invariant
- coordinates in observer rest frame (Minkowski):
 - (local) Lorentz symmetry (indep. of FRW coordinates)
 - boost is fixed, only rotational freedom
 - cosmological observables: not invariant under Lorentz
 - direct connection to **QFT** calculations

Symmetries

- general relativity (in cosmology):
 - diffeomorphism symmetry: any coordinates work
 - FRW metric with any gauge choice
 - cosmological observables: gauge invariant
- coordinates in observer rest frame (Minkowski):
 - (local) Lorentz symmetry (indep. of FRW coordinates)
 - boost is fixed, only rotational freedom
 - cosmological observables: not invariant under Lorentz
 - direct connection to **QFT** calculations
 - → tetrad formalism (local internal gauge symmetry)

Simultaneity

- no absolute simultaneity
- any choice of hypersurface is ok (gauge freedom)
- perturbations depend on choice of hypersurface (gauge)

simultaneity is relative!

Gauge Issues

- theoretical predictions in cosmology
 - compute perturbations such as

$$\delta_m, \ \psi, \ P_m(k), \ \cdots$$

• compare to observations such as $\delta_m^{\text{obs}}, P_m^{\text{obs}}(k), \cdots$

$$\delta_m^{\text{obs}}, P_m^{\text{obs}}(k), \cdots$$

- perturbations are gauge-dependent
- cannot be directly associated with observables!
- observable quantities:
 - gauge-invariance is a necessary condition, but not a sufficient condition
 - explicit check is needed

(c) Gauge-Invariance

- cosmological observables:
 - should be gauge-invariant, but std description: no!
- standard theoretical descriptions:
 - chose one gauge, e.g., conformal Newtonian gauge
 - complete gauge fixing: gauge-invariant, not enough!
 - gauge-dependent: in general representations
- lessons learned:
 - gauge fixing: easier, but lose ability to verify
 - explicit check of gauge transformations

Take-Home Message

- standard descriptions: incomplete
 - gauge dependent: different values in different gauges
 - no specification of observer & source
 - nor frames in which physical events take place
- limited to linear order:
 - rely on background FRW metric
 - similar to Minkowski metric in observer rest frame
 - only at 1st order, not generally valid

need to re-write cosmology: what we do in Zürich!

III. HOW CAN WE FIX STD COSMOLOGY?

Gauge-Invariant Formalism

Observables

- use observables, not unobservables!
- unobservables: (gauge-dependent)
 - most quantities in theoretical descriptions

$$\bar{z}, \ \hat{s}, \ \delta_m, \ \psi, \ P_m(k), \cdots$$

- observables: (physical)
 - photon wave vector in observer rest frame

$$k^a = \omega \left(1, -n^i \right) , \qquad n^i = (\theta, \phi) , \qquad \omega = 2\pi \nu ,$$

- ind. FRW, gauge-invariant, subject to Lorentz trans.
- same for other observables & derivables
- e.g., redshift, angular size, $1+z=rac{
 u_{
 m src}}{
 u}$, $(d heta,d\phi)$, \cdots

FRW Coordinates

- going to coordinates: <u>tetrad vectors</u> at observer $e_a^{\mu}(x_o^{\nu})$
- photon wave vector in FRW:
 - different from what we measure in rest frame!

$$k^{\mu} = e_{a}^{\mu} k^{a} = \frac{\omega}{a} \left[1 - \mathcal{A} - n^{i} \delta_{i}^{\beta} \left(\mathcal{U}_{\beta} - \mathcal{B}_{\beta} \right), -n^{i} \delta_{i}^{\alpha} + \mathcal{U}^{\alpha} + n^{i} \delta_{i}^{\beta} \left(\varphi \ \delta_{\beta}^{\alpha} + \mathcal{G}^{\alpha}_{\beta} + C_{\beta}^{\alpha} \right) + \epsilon^{\alpha}_{ij} n^{i} \Omega^{j} \right]$$

- Doppler effect, gravitational redshift, distortion, etc.
- same for other observables & derivables

Yoo, Grimm, Mitsou, Amara, Refregier 2018 JCAP 04, 029

- transport them to source position:
 - geodesic equation but with boundary condition!
 - geodesic deviation equation for shapes
 - check gauge dependence (yes, specific way)

Physical Quantities at SRC

- going to source rest frame: tetrad vectors at src $e_a^{\mu}(x_s^{\nu})$
 - same effects at src: Doppler effect, gravitational redshift, frame distortion, misalignment, etc.
 - src has different velocity, potential, etc
- relation bw observables & physical quantities:
 - should be gauge invariant, explicit check needed
 - e.g. src physical length vs observed angular size
 - emitted frequency vs measured frequency (redshift)
 - intrinsic luminosity vs apparent flux, etc.
 - also subject to LLT at observer & source

Boltzmann EQ & QFT

- evolution equations along trajectory:
 - LHS: propagation of any fluids in spacetime manifold
 - RHS: particle interactions in rest frame
 - S-matrix invariant under LLT, not under diffeo.
- problems in standard approach:
 - parametrize geodesic & momentum $x^{\mu}(\lambda)$, $p^{\mu}=\frac{dx^{\mu}}{d\lambda}$
 - coordinate transformation

$$d\tilde{x}^{\mu} = \frac{\partial \tilde{x}^{\mu}}{\partial x^{\nu}} dx^{\nu} , \quad \tilde{p}^{\mu} = \frac{\partial \tilde{x}^{\mu}}{\partial x^{\nu}} p^{\nu} \qquad |\mathcal{M}(p_i^{\mu})|^2 \neq |\tilde{\mathcal{M}}(\tilde{p}_i^{\mu})|^2$$

• microscopic physics in rest frame

$$p^{a} = e^{a}_{\mu} p^{\mu}, \quad \tilde{p}^{a} = \Lambda^{a}_{b} p^{b} \qquad |\mathcal{M}(p^{a}_{i})|^{2} = |\tilde{\mathcal{M}}(\tilde{p}^{a}_{i})|^{2}$$

Tetrad Formalism

- tetrad fields: e^{μ}_a
 - metric is fully contained in tetrad $g_{\mu \nu} = \eta_{ab} e^a_\mu e^b_
 u$
 - transparency: diffeo. & LLT (internal gauge symm.)
 - spinors: a representation of SL(2,C), not in diffeo.
 - already well developed in general relativity
- application to cosmology: natural generalization
 - not only at observer or src, but fields (everywhere!)
 - observer family: all possible observers everywhere
 - when projected, "observables" & gauge invariant
 - natural connection to QFT in Minkowski spacetime

IV. DO WE HAVE TO CARE?

Impacts of the Relativistic Effects

(a) Luminosity Distance

- standard candle:
 - intrinsic luminosity: L_{SN} known
 - observables: flux, redshift, position $f_{\text{obs}}, z_{\text{obs}}, n_{\text{obs}}$
 - luminosity distance: $\mathcal{D}_L = \left(\frac{L_{\mathrm{SN}}}{4\pi f_{\mathrm{obs}}} \right)$

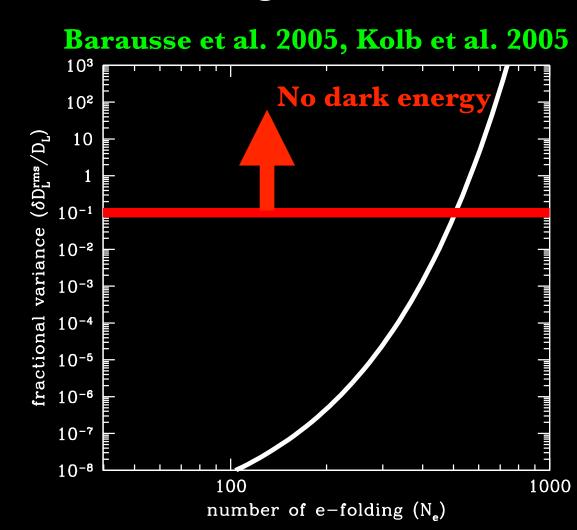
- inhomogeneities:
 - all observables are affected
 - perturbations: $\mathcal{D}_L = \bar{D}_L(z_{\mathrm{obs}})(1+\delta\mathcal{D})$
 - LHS: observable, gauge-invariant
 - RHS: should be gauge-invariant

Fluctuations in Luminosity Distance

- linear-order calculations:
 - ullet with respect to observed redshift: $z_{
 m obs}$
 - luminosity distance: $\mathcal{D}_L = \bar{D}_L(z_{\mathrm{obs}})(1+\delta\mathcal{D})$ perturbations: gauge invariant $\delta\mathcal{D} = \delta z + \frac{\delta r}{\bar{r}} - \kappa + \Xi$
 - individual terms: gauge dependent

Sasaki 1987, Bonvin, Durrer, Kunz 2006, Schmidt & Jeong 2014, Biern & Yoo 2017

- physical interpretation:
 - ullet distortion in redshift: δz

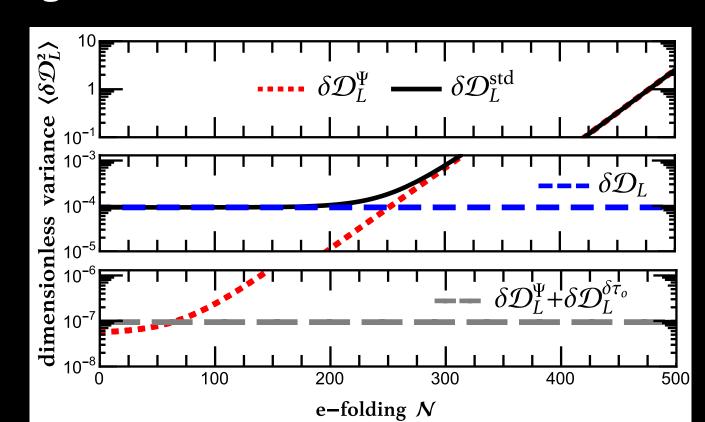

$$1 + z_{\text{obs}} = \frac{1 + \delta z}{a(\eta)}$$

- radial & angular distortions of src position: δr
- distortion in local frame: $\Xi = rac{1}{2} \left(C_i^i C_{ij} n^i n^j
 ight)$

Infrared Divergences

- standard calculations:
 - order unity variance with N~500 e-folding
 - no need for dark energy:
 - ullet no upper limit on N

- many groups:
 - found <u>same</u> results
 - impose ad hoc IR cutoff k_{IR}~H₀ is imposed
 - conformal Newtonian gauge

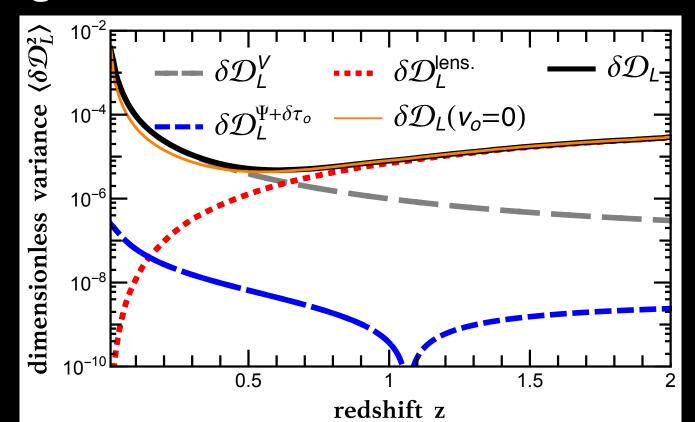

Impact on Luminosity Distance

• linear-order expressions:

$$\mathcal{D}_L = ar{D}_L(z_{
m obs})(1+\delta\mathcal{D})$$
 $\delta\mathcal{D} = \delta z + rac{\delta r}{ar{r}} - \kappa + \Xi$

- black: standard calculation (IR divergence)
- blue: correct gauge-invariant calculation
- grey: missing component
- <u>cancellation</u>:
 potential terms
 balanced

Biern & Yoo 2017 JCAP


Impact on Luminosity Distance

• linear-order expressions:

$$\mathcal{D}_L = \bar{D}_L(z_{\mathrm{obs}})(1 + \delta \mathcal{D})$$

$$\delta \mathcal{D} = \delta z + \frac{\delta r}{\bar{r}} - \kappa + \Xi$$

- black: standard calculation (IR divergence)
- blue: correct gauge-invariant calculation
- grey: missing component
- <u>cancellation</u>:
 potential terms
 balanced

Biern & Yoo 2017 JCAP

(a) Luminosity Distance

- summary of new findings:
 - no IR-divergences in variance: we need dark energy!
 - no ad hoc IR cutoff is needed
 - definitive & explicit end to controversy

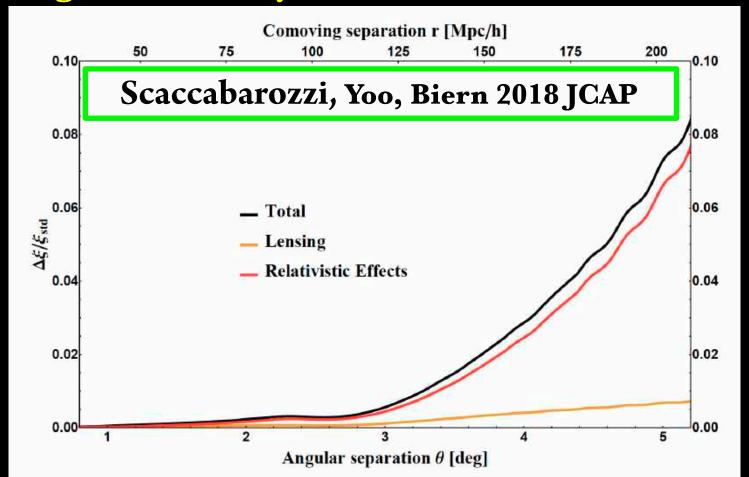
Biern & Yoo 2017

- lessons learned:
 - use correct gauge-invariant expression
 - make sure to explicitly check gauge-invariance
 - shift in mean LD from background (2nd order; in progress)
 - suspect more missing terms in other calculations

(see Yoo & Scaccabarozzi 2016: compare 4 methods for computing luminosity distance)

(b) Galaxy Clustering

• measure of how galaxies are distributed:



- construct fluctuation in galaxy counts:
 - total number of observed galaxies dN_{tot}
 - observed volume $dV_{
 m obs}$ given $(z_{
 m obs}, heta_{
 m obs}, \phi_{
 m obs})$
 - fluctuation field $\delta_g^{
 m obs} = rac{n_g^{
 m obs}}{\langle n_g^{
 m obs}
 angle} 1$
- relation to physical number density:
 - number conservation $dN_{\rm tot} = n_g^{\rm phy} dV_{\rm phy} = n_g^{\rm obs} dV_{\rm obs}$
 - observed number density $n_g^{\rm obs} = n_g^{\rm phy} \frac{dV_{\rm phy}}{dV_{\rm obs}}$

$$z_{\rm obs} \neq z$$
, $f_{\rm obs} \neq f_{\rm phy}$, $dV_{\rm obs} \neq dV_{\rm phy}$

Correlation Function

- relativistic effects:
 - beyond BAO: a few percent level corrections
 - lensing and velocity contributions

(b) Galaxy Clustering

- gauge-invariant description:
 - several velocity contributions (missing)
 - relativistic effects: a few percent beyond BAO
 - gravity waves: very small contribution

- work in progress:
 - second-order calculations
 - power spectrum & bispectrum on horizon scales
 - primordial non-Gaussianity vs (late-time) relativistic effects

- limitations in standard weak lensing:
 - intrinsically <u>relativistic</u>, but <u>incomplete</u>
 - extension beyond linear order: difficult
- problems in standard weak lensing:
 - true source angular position: un-observable

$$\hat{s}_{\text{true}} = \hat{n}_{\text{obs}} + \delta n, \qquad \hat{n}_{\text{obs}} = (\theta, \ \phi)_{\text{obs}}, \qquad \delta n = (\delta \theta, \ \delta \phi)$$

• un-observable distortion matrix: angular size $(d\theta, d\phi)$

$$\begin{pmatrix} ds_{\theta} \\ \sin\theta \ ds_{\phi} \end{pmatrix} \equiv \begin{pmatrix} \mathbb{D}_{11} & \mathbb{D}_{12} \\ \mathbb{D}_{21} & \mathbb{D}_{22} \end{pmatrix} \begin{pmatrix} d\theta \\ \sin\theta d\phi \end{pmatrix}, \ \mathbb{D} \equiv \begin{pmatrix} 1-\kappa-\gamma_{1} & -\gamma_{2}-\omega \\ -\gamma_{2}+\omega & 1-\kappa+\gamma_{1} \end{pmatrix}$$

- limitations in standard weak lensing:
 - intrinsically <u>relativistic</u>, but <u>incomplete</u>
 - extension beyond linear order: difficult
- problems in standard weak lensing:
 - true source angular position: un-observable

$$\hat{s}_{\text{true}} = \hat{n}_{\text{obs}} + \delta n, \qquad \hat{n}_{\text{obs}} = (\theta, \ \phi)_{\text{obs}}, \qquad \delta n = (\delta \theta, \ \delta \phi)$$

• un-observable distortion matrix: angular size $(d\theta, d\phi)$

$$\begin{pmatrix} ds_{\theta} \\ \sin\theta \ ds_{\phi} \end{pmatrix} \equiv \begin{pmatrix} \mathbb{D}_{11} & \mathbb{D}_{12} \\ \mathbb{D}_{21} & \mathbb{D}_{22} \end{pmatrix} \begin{pmatrix} d\theta \\ \sin\theta d\phi \end{pmatrix}, \ \mathbb{D} \equiv \begin{pmatrix} 1-\kappa-\gamma_{1} & -\gamma_{2}-\omega \\ -\gamma_{2}+\omega & 1-\kappa+\gamma_{1} \end{pmatrix}$$

- limitations in standard weak lensing:
 - intrinsically <u>relativistic</u>, but <u>incomplete</u>
 - extension beyond linear order: difficult
- problems in standard weak lensing:
 - true source angular position: un-observable

$$\hat{s}_{\text{true}} = \hat{n}_{\text{obs}} + \delta n, \qquad \hat{n}_{\text{obs}} = (\theta, \ \phi)_{\text{obs}}, \qquad \delta n = (\delta \theta, \ \delta \phi)$$

• un-observable distortion matrix: angular size $(d\theta, d\phi)$

$$\begin{pmatrix} ds_{\theta} \\ \sin\theta \ ds_{\phi} \end{pmatrix} \equiv \begin{pmatrix} \mathbb{D}_{11} & \mathbb{D}_{12} \\ \mathbb{D}_{21} & \mathbb{D}_{22} \end{pmatrix} \begin{pmatrix} d\theta \\ \sin\theta d\phi \end{pmatrix}, \ \mathbb{D} \equiv \begin{pmatrix} 1-\kappa-\gamma_{1} & -\gamma_{2}-\omega \\ -\gamma_{2}+\omega & 1-\kappa+\gamma_{1} \end{pmatrix}$$

Gauge-Invariant Formalism

- relation to <u>physical length</u> & <u>shape</u> at src:
 - trace back size to src (geodesic deviation)
 - source position: gauge-dependent (still!)
 - rest frame: physical length $(dL_{d\theta}, dL_{d\phi})$ (coord. ind.)
 - physical distortion matrix

$$\begin{pmatrix} dL_{d\theta} \\ dL_{d\phi} \end{pmatrix} \equiv \bar{D}_A \begin{pmatrix} \hat{\mathbb{D}}_{11} & \hat{\mathbb{D}}_{12} \\ \hat{\mathbb{D}}_{21} & \hat{\mathbb{D}}_{22} \end{pmatrix} \begin{pmatrix} d\theta \\ \sin\theta \ d\phi \end{pmatrix}$$

• all lensing observables: gauge-invariant

Yoo, Grimm, Mitsou, Amara, Refregier 2018 JCAP and Grimm & Yoo 2018 JCAP

standard formalism: (but w/ proper relativistic effects)
$$-2\kappa = (2V_{\parallel} - 3C_{\parallel})_o + \int_0^{\bar{r}_z} \frac{d\bar{r}}{\bar{r}} \left(2n_{\alpha} - \hat{\nabla}_{\alpha}\right) 2C_{\beta}^{\alpha} n^{\beta} - \frac{2n_{\alpha}}{\bar{r}_z} \left(\mathcal{G}^{\alpha} + \delta x^{\alpha}\right)_o + \frac{2n_{\alpha}\mathcal{G}^{\alpha}}{\bar{r}_z}$$

$$- \int_0^{\bar{r}_z} d\bar{r} \left(\frac{\bar{r}_z - \bar{r}}{\bar{r}_z \bar{r}}\right) \hat{\nabla}^2 \left(\alpha_{\chi} - \varphi_{\chi} - C_{\parallel}\right) - \frac{1}{\bar{r}_z} \hat{\nabla}_{\alpha} \mathcal{G}^{\alpha},$$

- gauge dependent due to $\mathcal{G}^{\alpha} \rightarrow \mathcal{G}^{\alpha} \mathcal{L}^{\alpha}$
- standard κ : un-observable
- real lensing observable: $\delta \mathcal{D}$
- gauge-invariant formalism: real lensing convergence
 - angular diameter fluctuation $\delta \mathcal{D} = \delta z + \frac{\delta r}{\overline{x}} \kappa + \Xi$
 - velocity contributions: $V_s \frac{1}{\mathcal{H}\bar{r}_s} (V_s V_o)$

standard formalism: (but w/ proper relativistic effects)
$$-2\kappa = (2V_{\parallel} - 3C_{\parallel})_o + \int_0^{\bar{r}_z} \frac{d\bar{r}}{\bar{r}} \left(2n_{\alpha} - \hat{\nabla}_{\alpha}\right) 2C_{\beta}^{\alpha} n^{\beta} - \frac{2n_{\alpha}}{\bar{r}_z} \left(\mathcal{G}^{\alpha} + \delta x^{\alpha}\right)_o + \frac{2n_{\alpha}\mathcal{G}^{\alpha}}{\bar{r}_z} \left(-\int_0^{\bar{r}_z} d\bar{r} \left(\frac{\bar{r}_z - \bar{r}}{\bar{r}_z\bar{r}}\right) \hat{\nabla}^2 \left(\alpha_{\chi} - \varphi_{\chi}\right) - C_{\parallel}\right) - \frac{1}{\bar{r}_z} \hat{\nabla}_{\alpha} \mathcal{G}^{\alpha},$$

- gauge dependent due to $\mathcal{G}^{\alpha} \rightarrow \mathcal{G}^{\alpha} \mathcal{L}^{\alpha}$
- standard κ : un-observable
- real lensing observable: $\delta \mathcal{D}$
- gauge-invariant formalism: real lensing convergence
 - angular diameter fluctuation $\delta \mathcal{D} = \delta z + \frac{\delta r}{\overline{r}} \kappa + \Xi$
 - velocity contributions: $V_s \frac{1}{\mathcal{H}\bar{r}} (V_s V_o)$

standard formalism: (but w/ proper relativistic effects)
$$-2\kappa = (2V_{\parallel}) - 3C_{\parallel})_o + \int_0^{\bar{r}_z} \frac{d\bar{r}}{\bar{r}} \left(2n_{\alpha} - \hat{\nabla}_{\alpha}\right) 2C_{\beta}^{\alpha} n^{\beta} - \frac{2n_{\alpha}}{\bar{r}_z} \left(\mathcal{G}^{\alpha} + \delta x^{\alpha}\right)_o + \frac{2n_{\alpha}\mathcal{G}^{\alpha}}{\bar{r}_z}$$

$$-\int_0^{\bar{r}_z} d\bar{r} \left(\frac{\bar{r}_z - \bar{r}}{\bar{r}_z \bar{r}}\right) \hat{\nabla}^2 \left(\alpha_{\chi} - \varphi_{\chi}\right) - C_{\parallel} \left(-\frac{1}{\bar{r}_z} \hat{\nabla}_{\alpha} \mathcal{G}^{\alpha}\right)$$

- gauge dependent due to $\mathcal{G}^{\alpha} \rightarrow \mathcal{G}^{\alpha} \mathcal{L}^{\alpha}$
- standard κ : un-observable
- ullet real lensing observable: $\delta \mathcal{D}$
- gauge-invariant formalism: real lensing convergence
 - angular diameter fluctuation $\delta \mathcal{D} = \delta z + \frac{\delta r}{\overline{r}} \kappa + \Xi$
 - velocity contributions: $V_s \frac{1}{\mathcal{H}\bar{r}_z} (V_s V_o)$

standard formalism: (but w/ proper relativistic effects)
$$-2\kappa = (2V_{\parallel} + 3C_{\parallel})_{o} + \int_{0}^{\bar{r}_{z}} \frac{d\bar{r}}{\bar{r}} \left(2n_{\alpha} - \hat{\nabla}_{\alpha}\right) 2C_{\beta}^{\alpha} n^{\beta} - \frac{2n_{\alpha}}{\bar{r}_{z}} \left(\mathcal{G}^{\alpha} + \delta x^{\alpha}\right)_{o} + \frac{2n_{\alpha}\mathcal{G}^{\alpha}}{\bar{r}_{z}}$$

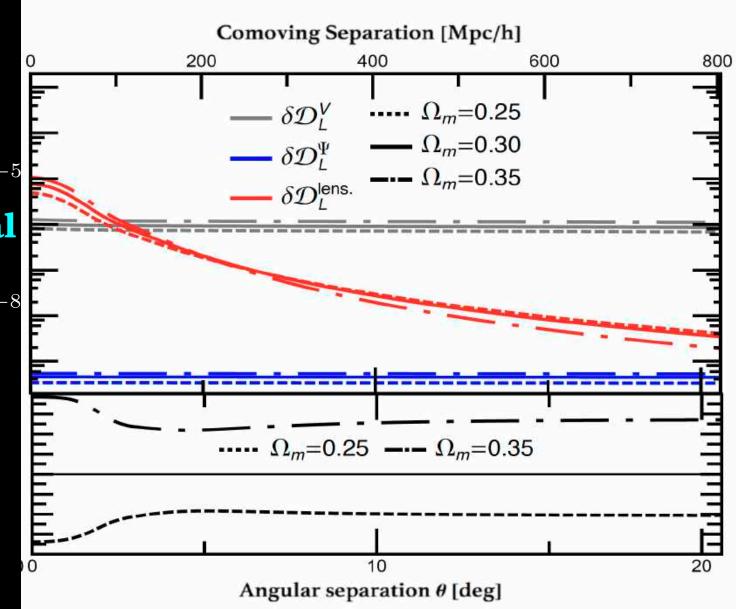
$$-\int_{0}^{\bar{r}_{z}} d\bar{r} \left(\frac{\bar{r}_{z} - \bar{r}}{\bar{r}_{z}\bar{r}}\right) \hat{\nabla}^{2} \left(\alpha_{\chi} - \varphi_{\chi}\right) - C_{\parallel} - \frac{1}{\bar{r}_{z}} \hat{\nabla}_{\alpha} \mathcal{G}^{\alpha},$$

- gauge dependent due to $\mathcal{G}^{\alpha} \rightarrow \mathcal{G}^{\alpha} \mathcal{L}^{\alpha}$
- standard κ : un-observable
- ullet real lensing observable: $\delta \mathcal{D}$
- gauge-invariant formalism: real lensing convergence
 - angular diameter fluctuation $\delta \mathcal{D} = \delta z + rac{\delta r}{\overline{r}} \kappa + \Xi$
 - velocity contributions: $V_s \frac{1}{\mathcal{H}\bar{r}_z} (V_s V_o)$

Systematic Errors

standard model

$$\delta \mathcal{D}_L^{\mathrm{lens.}} \equiv \kappa_{\mathrm{std}}$$


• missing velocity

$$\delta \mathcal{D}_L^V$$
 10⁻⁵

missing potential

$$\delta \mathcal{D}_L^{\Psi}$$
 10

- significant systematic errors
- power spectrum in progress

Biern & Yoo 2017

Lensing Shear (scalar)

• standard formalism: $\pm 2\gamma \equiv \gamma_1 \pm i\gamma_2 = m_{\mp}^{\alpha} m_{\mp}^{\beta} \gamma_{\alpha\beta}$

$$\gamma_{\alpha\beta} = -\left(C_{\alpha\beta}\right)_{o} + \mathcal{G}_{\alpha,\beta} + \int_{0}^{\bar{r}_{z}} d\bar{r} \left(\frac{\partial}{\partial x^{\beta}}\right) 2C_{\alpha\gamma} n^{\gamma} + \left[\int_{0}^{\bar{r}_{z}} d\bar{r} \left(\frac{\bar{r}_{z} - \bar{r}}{\bar{r}_{z}\bar{r}}\right) \left[\bar{r}^{2} \left(\frac{\partial^{2}}{\partial x^{\alpha} \partial x^{\beta}}\right) \left(\alpha_{\chi} - \varphi_{\chi} - C_{\parallel}\right)\right]$$

- gauge dependent due to $\mathcal{G}^{\alpha} \rightarrow \mathcal{G}^{\alpha} \mathcal{L}^{\alpha}$
- correct shear in cN gauge w/ scalar only (lucky!)
- other gauges yield different shear!

scalar: α_{χ} , φ_{χ} tensor: $C_{\alpha\beta}$ (SVT decomposition of metric)

• gauge-invariant formalism:

$$\hat{\gamma}_{\alpha\beta} = -\left(C_{\alpha\beta o} + C_{\alpha\beta}\right) + \int_{0}^{\bar{r}_{z}} d\bar{r} \left(\frac{\partial}{\partial x^{\beta}}\right) 2C_{\alpha\gamma} n^{\gamma} + \int_{0}^{\bar{r}_{z}} d\bar{r} \left(\frac{\bar{r}_{z} - \bar{r}}{\bar{r}_{z}\bar{r}}\right) \left[\bar{r}^{2} \left(\frac{\partial^{2}}{\partial x^{\alpha} \partial x^{\beta}}\right) \left(\alpha_{\chi} - \varphi_{\chi} - C_{\parallel}\right)\right]$$

Lensing Shear (tensor)

• standard formalism: $\pm 2\gamma \equiv \gamma_1 \pm i\gamma_2 = m_{\mp}^{\alpha} m_{\mp}^{\beta} \gamma_{\alpha\beta}$

$$\gamma_{\alpha\beta} = -\left(C_{\alpha\beta}\right)_{o} + \mathcal{G}_{\alpha,\beta} + \left(\int_{0}^{\bar{r}_{z}} d\bar{r} \left(\frac{\partial}{\partial x^{\beta}}\right) 2C_{\alpha\gamma} n^{\gamma}\right) + \int_{0}^{\bar{r}_{z}} d\bar{r} \left(\frac{\bar{r}_{z} - \bar{r}}{\bar{r}_{z}\bar{r}}\right) \left[\bar{r}^{2} \left(\frac{\partial^{2}}{\partial x^{\alpha} \partial x^{\beta}}\right) \left(\alpha_{\chi} - \varphi_{\chi} - C_{\parallel}\right)\right]$$

- tensors: gauge invariant at 1st order
- incorrect shear in tensor & IR divergence!

scalar: α_{χ} , φ_{χ} tensor: $C_{\alpha\beta}$ (SVT decomposition of metric)

• gauge-invariant formalism:

$$\hat{\gamma}_{\alpha\beta} = \left(-\left(C_{\alpha\beta o} + C_{\alpha\beta} \right) + \left(\int_{0}^{\bar{r}_{z}} d\bar{r} \left(\frac{\partial}{\partial x^{\beta}} \right) 2C_{\alpha\gamma} n^{\gamma} \right) + \int_{0}^{\bar{r}_{z}} d\bar{r} \left(\frac{\bar{r}_{z} - \bar{r}}{\bar{r}_{z}\bar{r}} \right) \left[\bar{r}^{2} \left(\frac{\partial^{2}}{\partial x^{\alpha} \partial x^{\beta}} \right) \left(\alpha_{\chi} - \varphi_{\chi} - C_{\parallel} \right) \right] \right)$$

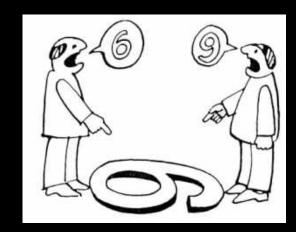
• metric shear or FNC term: tensor at source

Dodelson et al. 2003, Schmidt & Jeong 2012

• rest frame: observer frame & source frame

Lensing Rotation

- lensed images rotate!
 - no rotation due to scalar at 1st order
 - rotation by scalars beyond linear order
- Skrotsky effect
 - rotation by vector and tensor even at 1st order
 - probe of gravity waves
- gauge invariant formalism:
 - Skrotsky effect & difference in orientation


$$2\hat{\omega} = 2\left(\Omega_o^n - \Omega_s^n\right) - 2 \cos\theta \,\,\Delta\phi - \int_0^{\bar{r}_z} d\bar{r} \,\,\mathbf{n} \cdot \nabla \times \left(\Psi^\alpha + 2C_{\parallel}^\alpha\right)$$

To Rotate or Not to Rotate

- how to measure <u>rotation</u>?
 - orientations should be synchronized
 - <u>parallel transport</u> along null path (the only way! path dependent in curved space)
 - orientation of src: completely fixed by one at obs

$$2\Omega_s^n = 2\Omega_o^n - 2 \cos\theta \, \Delta\phi - \int_0^{\bar{r}} d\bar{r} \, n \cdot \nabla \times \left(\Psi^\alpha + 2C_{\parallel}^\alpha \right) \qquad \qquad \therefore \quad \hat{\omega} = 0$$

- bottom line:
 - complete cancellation in rotation!
 - no lensing rotation at all at 1st order
 - fictitious rotation against FRW coordinate

Radio Jets!

- orientation of <u>radio jets</u>:
 - polarization: central geodesic, parallel transported
 - extended images: geodesic deviation, not PTed
- intrinsic relation:
 - jet & polarization is perpendicular in source rest frame
 - infer lensing rotation

- summary of new findings:
 - convergence: fluctuation in luminosity distance (missing velocity contributions)
 - shear: ok with scalar in cN gauge
 - rotation: zero at 1st order, even with tensor

- much of the work in progress:
 - impact on 2pt shear correlation
 - convergence and shear cross-correlation
 - beyond linear order

(d) Cosmic Microwave Background

- much of the work in progress:
 - Boltzmann equation in tetrad formalism
 - use of background metric (except Bond & Szalay 1983)
 - linear order: ok except monopole and dipole (

• beyond linear order, not ok

- future applications:
 - CMB lensing (2nd order): not complete
 - CMB spectral distortion
 - and more (stay tuned!)

CMB Temperatures \bar{T} and $\langle T \rangle^{\rm obs}$

- \overline{T} : cosmological parameter
 - determine **background** evolution
 - defined in background universe, unique number
 - influence perturbation evolution

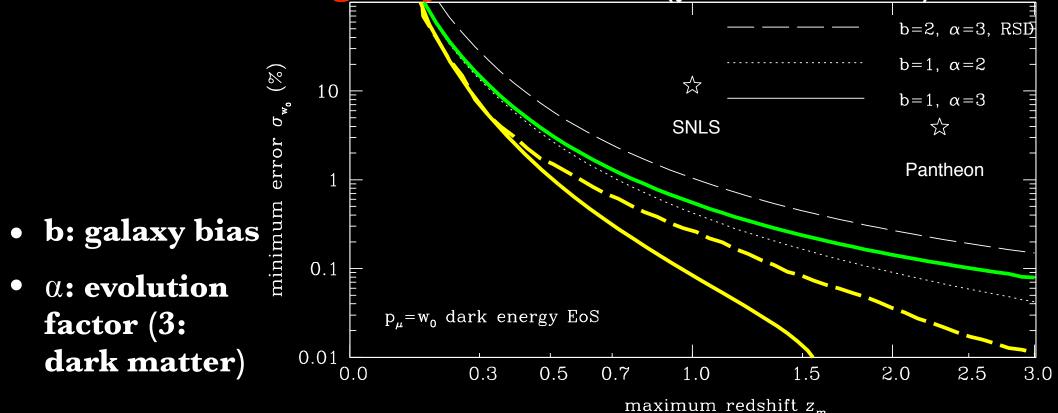
- $\langle T \rangle^{\text{obs}}$: observed CMB temperature (from FIRAS)
 - <u>angle average</u> CMB temperature over all sky
 - uncertainty in $\langle T \rangle^{\text{obs}}$:
 - COBE FIRAS 1996: $\langle T \rangle^{\text{obs}} = 2.728 \pm 0.004 \text{ K}$ (0.15%)
 - + WMAP 2009: $\langle T \rangle^{\text{obs}} = 2.7255 \pm 5.7 \cdot 10^{-4} \text{ K}$ (0.021%)

(e) Cosmic Variance

- standard cosmic variance:
 - cubic box of simultaneity
 - number of independent modes
 - luminosity distance: no CV limit if $N_{
 m SN}=\infty$
- cosmic variance on the light cone:
 - single past-light cone
 - all cosmological observables: CV limited (luminosity distance, no exception)
 - maximum cosmological information

(e) Cosmic Variance

- type Ia supernova:
 - LSST will measure approximately $N_{
 m SN}=\infty$
 - do we need to? when cos info is <u>saturated</u>?
 - what is the maximum cos info up to z=1
- missing baryon & local Hubble:
 - tip of the light cone, large cosmic variance
 - what is **CV** contribution to the problem?


Maximum Cosmological Information

- idealized supernova observations:
 - no systematic errors
 - infinite number of observations (no stat. error)
 - all sky, all SN measurements up to maximum redshift
- cosmic variance:
 - information is not infinite!
 - observed flux, angular position, redshift: correlated
 - host galaxy fluctuations & radial correlation: not properly considered in literature

Maximum Cosmological Information

- two cosmological parameters in LCDM: (Ω_m, w_0)
 - <u>imprecise</u> forecast in <u>yellow</u>:
 - without radial correlation (yellow solid)

• without host galaxy correlation (yellow dashed)

V. MORE WORK & FUTURE DIRECTION:

In the Next Five Years and the Coming Decade

What can We Learn?

- relativistic effects: small, but detectable!
 - extra and critical information
 - difficult, but high gain (new opportunities)
- key role: deviations from standard cosmology
 - higher-order signatures (fossil fields, DE fluct.)
 - not present in Newtonian description
- complementary role: enigmatic standard cosmology
 - (better) complementary to CMB constraints
 - convincing constraints on dark energy

Future Surveys

- future ground-based surveys:
 - Dark Energy Spectroscopic Instrument
 - Large Synoptic Survey Telescope
 - Square Kilometer Array
 - **CMB** Stage-IV
- future space missions:
 - Euclid
 - Wide-Field Infrared Survey Telescope

Are We Ready for Precision Cosmology?

General Relativistic Effects and Gauge-Invariant Formalism

Jaiyul Yoo

CENTER for Theoretical Astrophysics and Cosmology
Institutes for Computational Science & Physics, University of Zürich

24 January 2020

Executive Summary

- incomplete standard theoretical description of cosmological observables
 - gauge dependent & missing relativistic effects
 - no frame specification for physical events and observables
 - limited to linear order
- subtle relativistic effects in precision cosmology
 - a new area of research
 - test general relativity (or modified gravity)
 - signatures of inflationary models
 - consistency check & complementary constraints