Higgs vacuum metastability	Cosmological Collider Physics	Signature of a SM vacuum at high energies	Signature of a dynamical Higgs minimum
00000	0000000	000000	000000

Minimal signatures of the Standard Model in cosmological collider physics 1907.10624 (JHEP), 1908.00019 (PRD) with Anson Hook (Maryland), Junwu Huang (Perimeter)

Davide Racco

Perimeter Institute for Theoretical Physics

Université de Genève 10th January 2020

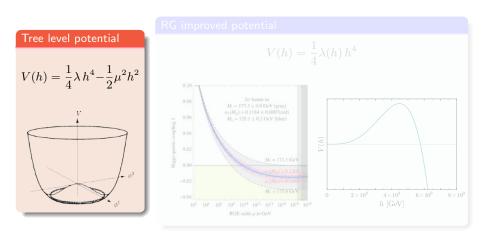
Higgs vacuum metastability Co	osmological Collider Physics	Signature of a SM vacuum at high energies	Signature of a dynamical Higgs minimum
00000 0	0000000	000000	000000

- 2 Cosmological Collider Physics
- Signature of a SM vacuum at high energies
- 4 Signature of a dynamical Higgs minimum

- Higgs potential beyond the tree level
- Implications of living in a false vacuum
- Possible observational signatures

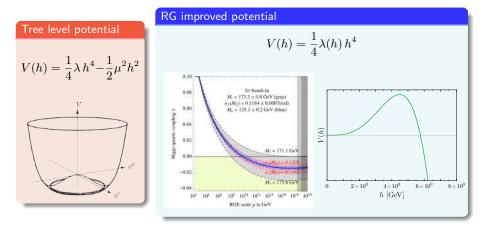
2 Cosmological Collider Physics

- Bispectrum and inflationary universe
- Oscillatory features as a clue for heavy particles during inflation
- Chemical potential for fermions


Signature of a SM vacuum at high energies

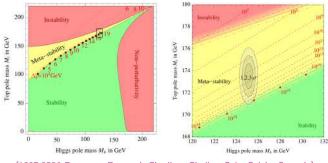
- A high energy minimum in the Higgs potential
- Contribution of SM fermions to cosmological collider
- Distinguishing feature of the signal and implications

Isignature of a dynamical Higgs minimum


- A minimal signal from the SM
- Contribution of fermion density to Higgs potential
- Distinguishing feature of the signal

Higgs vacuum metastability ●○○○○	Cosmological Collider Physics	Signature of a SM vacuum at high energies	Signature of a dynamical Higgs minimum 000000
Higgs potentia	l beyond the tree	e level	

Higgs potential	howard the tree	lev (el	
●0000	0000000	0000000	000000
Higgs vacuum metastability	Cosmological Collider Physics	Signature of a SM vacuum at high energies	Signature of a dynamical Higgs minimum


Higgs vacuum metastability	Cosmological Collider Physics	Signature of a SM vacuum at high energies	Signature of a dynamical Higgs minimum
0000	0000000	000000	000000

Implications of living in a false vacuum

['79 Cabibbo, Maiani, Parisi, Petronzio; Hung; '89 Sher; '94 Altarelli, Isidori; '96 Casas, Espinosa, Quirós; '07 Espinosa, Giudice, Riotto; '12 Degrassi, Di Vita, Elias-Miró, Espinosa, Giudice, Isidori, Strumia; ...]

Tunnelling today

Negligible probability, today we are safe. We live in a metastable Universe.

[1307.3536 Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia]

In all and and of	It is a false .		
0000	0000000	000000	000000
Higgs vacuum metastability	Cosmological Collider Physics	Signature of a SM vacuum at high energies	Signature of a dynamical Higgs minimum

Implications of living in a false vacuum

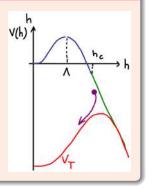
['07 Espinosa, Giudice, Riotto; '15 Espinosa, Giudice, Morgante, Riotto, Senatore, Strumia, Tetradis; '16 East, Kearney, Shakya, Yoo, Zurek; '16 Salvio, Strumia, Tetradis, Urbano; ...]

During inflation

- Power spectrum of a scalar field in de Sitter is $\left(\frac{H}{2\pi}\right)^2 \Longrightarrow$ quantum jumps of the background value of the Higgs field of order $\sim \pm \frac{H}{2\pi}$, on a time scale H^{-1} .
- Depending on the value of *H*, these fluctuations could lead the Higgs beyond the barrier, and make it roll towards the true vacuum.
- This vacuum has large negative energy \implies AdS bubble, which can expand at the speed of light. \implies It didn't happen in our past lightcone.

Incultantions of	It to a false .		
00000	0000000	000000	000000
Higgs vacuum metastability	Cosmological Collider Physics	Signature of a SM vacuum at high energies	Signature of a dynamical Higgs minimum

Implications of living in a false vacuum


['07 Espinosa, Giudice, Riotto; '15 Espinosa, Giudice, Morgante, Riotto, Senatore, Strumia, Tetradis; . . .]

During reheating

 Higgs interacts with thermal bath of SM particles. Overall effect: stabilisation of the potential through a thermal contribution V_T,

$$V_0(h) + V_T(h) = \frac{1}{4}\lambda(h)h^4 + \frac{1}{2}m_T^2h^2,$$

$$m_T^2 = 0.12 T^2 \exp\left(-\frac{h}{2\pi T}\right)$$

• If $T_{\rm RH}$ is high enough and h is not too far, thermal corrections can "rescue" the Higgs, bringing it back around 0.

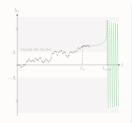
Cosmological Collider Physics 00000000 ignature of a SM vacuum at high energies

iignature of a dynamical Higgs minimum

Are there possible observational signatures of the Higgs instability?

Tunnelling today: not here, until this morning.

If this time is on the order of 10^9 yr, we have occasion for anxiety.


This would be the appropriate case to study if we were currently living in a false vacuum whose apocalyptic decay is yet to occur.

[Coleman]

What if the Higgs probed the unstable region at the end of inflation, and was rescued back in time by thermal corrections at reheating?

Two signatures: [Espinosa, DR, Riotto PRL '17; JCAP '18]

- Primordial Black Holes as Dark Matter
- Background of Gravitational Waves

What if the Higgs field lived in a high energy minimum $v_{\rm uv}$ during inflation, lifting the mass of SM particles? *Cosmological collider physics* can unveil the presence of heavy SM fermions during inflation.

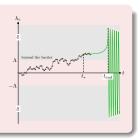
Cosmological Collider Physics 00000000 Signature of a SM vacuum at high energies

iignature of a dynamical Higgs minimum

Are there possible observational signatures of the Higgs instability?

Tunnelling today: not here, until this morning.

If this time is on the order of 10^9 yr, we have occasion for anxiety.


This would be the appropriate case to study if we were currently living in a false vacuum whose apocalyptic decay is yet to occur.

[Coleman]

What if the Higgs probed the unstable region at the end of inflation, and was rescued back in time by thermal corrections at reheating?

Two signatures: [Espinosa, DR, Riotto PRL '17; JCAP '18]

- Primordial Black Holes as Dark Matter
- Background of Gravitational Waves

What if the Higgs field lived in a high energy minimum $v_{\rm uv}$ during inflation, lifting the mass of SM particles? *Cosmological collider physics* can unveil the presence of heavy SM fermions during inflation.

Cosmological Collider Physics

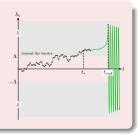
Signature of a SM vacuum at high energies

signature of a dynamical Higgs minimum

Are there possible observational signatures of the Higgs instability?

Tunnelling today: not here, until this morning.

If this time is on the order of 10^9 yr, we have occasion for anxiety.


This would be the appropriate case to study if we were currently living in a false vacuum whose apocalyptic decay is yet to occur.

[Coleman]

What if the Higgs probed the unstable region at the end of inflation, and was rescued back in time by thermal corrections at reheating?

Two signatures: [Espinosa, DR, Riotto PRL '17; JCAP '18]

- Primordial Black Holes as Dark Matter
- Background of Gravitational Waves

What if the Higgs field lived in a high energy minimum $v_{\rm UV}$ during inflation, lifting the mass of SM particles? *Cosmological collider physics* can unveil the presence of heavy SM fermions during inflation.

- Higgs potential beyond the tree level
- Implications of living in a false vacuum
- Possible observational signatures

2 Cosmological Collider Physics

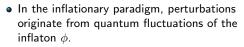
- Bispectrum and inflationary universe
- Oscillatory features as a clue for heavy particles during inflation
- Chemical potential for fermions

Signature of a SM vacuum at high energies

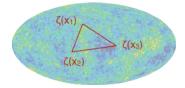
- A high energy minimum in the Higgs potential
- Contribution of SM fermions to cosmological collider
- Distinguishing feature of the signal and implications

Signature of a dynamical Higgs minimum

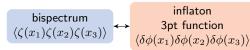
- A minimal signal from the SM
- Contribution of fermion density to Higgs potential
- Distinguishing feature of the signal

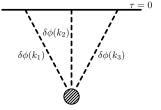


Cosmological Collider Physics

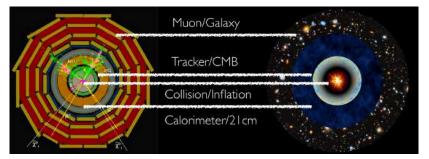

ignature of a SM vacuum at high energies

ignature of a dynamical Higgs minimum


Density perturbations and inflationary Universe



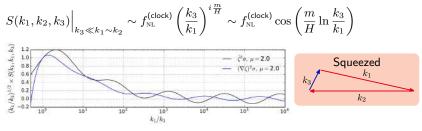
• Correlation functions can shed light on inflaton interactions:



Higgs vacuum metastability	Cosmological Collider Physics	Signature of a SM vacuum at high energies	Signature of a dynamical Higgs minimum
00000	0000000	0000000	000000
Cosmological c	ollider physics		

[Chen, Wang '09; Baumann, Green '11; Arkani-Hamed, Maldacena '15; Lee, Baumann, Pimentel '16; ...]

- We can probe fundamental physics through primordial perturbations.
- Great potential with future surveys of intensity mapping (21cm emission).


[Credit: Zhong-Zhi Xianyu, Junwu Huang]

Cosmological c		000000	000000
Higgs vacuum metastability	Cosmological Collider Physics	Signature of a SM vacuum at high energies	Signature of a dynamical Higgs minimum

• Bispectrum defined through shape function S :

$$\begin{split} \langle \zeta(\vec{k}_1)\zeta(\vec{k}_2)\zeta(\vec{k}_3) \rangle &= (2\pi)^3 \,\,\delta(\vec{k}_1 + \vec{k}_2 + \vec{k}_3) \\ &\cdot \frac{(2\pi)^4 \mathcal{P}_{\zeta}^2}{k_1^2 k_2^2 k_3^2} \,\,S(k_1, k_2, k_3) \end{split}$$

• Distinctive signature of massive particles interacting with the inflaton: *oscillating* feature in the squeezed bispectrum.

[Meerburg, Münchmeyer, Muñoz, Chen '16]

 $\vec{m} = \frac{m}{H} \begin{cases} \tau = 0 \\ \delta \phi \\ \delta \phi \\ \vec{m} = \frac{m}{H} \end{cases}$

Higgs vacuum metastability 00000	Cosmological Collider Physics	Signature of a SM vacuum at high energies	Signature of a dynamical Higgs minimum 000000
Oscillating pat	tern in the squee	zed bispectrum	

• Origin of the oscillating signal: the wavefunction of the massive particle evolves as

$$e^{im(t_3-t_1)} \stackrel{\tau \sim -e^{iHt}}{\sim} \left(\frac{\tau_3}{\tau_1}\right)^{i\frac{m}{H}}$$

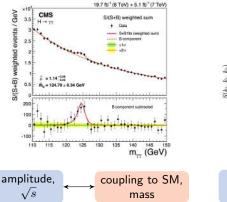
- What are the most relevant times for particle production? Early times $(|k\tau| \gg 1)$: mode sees Minkowski space \Rightarrow no production.
- Non-adiabatic particle production occurs when adiabatic regime fails. This goes as

$$P \sim e^{-\omega^2/\dot{\omega}} \sim e^{-m/H} \,,$$

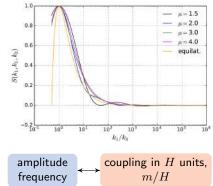
which occurs for $\omega \sim m$ when $|k\tau| \sim 1$. \implies most efficient production for $|k\tau| \sim 1$, and

$$f_{\rm NL}^{\rm (clock)} \sim \left(\frac{\tau_3}{\tau_1}\right)^{i\frac{m}{H}} \sim \left(\frac{k_3}{k_1}\right)^{-i\frac{m}{H}}$$

• Usually, the production is maximised for $m \sim H$.


Cosmological Collider Physics

Signature of a SM vacuum at high energies


iignature of a dynamical Higgs minimum

Cosmological collider physics

Particle colliders

Oscillating feature in squeezed bispectrum

00000	00000000	of a chemical notential	000000
		Signature of a SM vacuum at high energies	

[Adshead, Pearce, Peloso, Roberts, Sorbo '18; Chen, Wang, Xianyu '18]

- Particle production is enhanced if the dispersion relation is modified with a time-dependent contribution.
- For fermions, the coupling

ω

$$\frac{\partial_{\mu}\phi}{\Lambda_{f}}(\overline{f}\gamma^{\mu}\gamma_{5}f) \stackrel{\text{inflation}}{\longrightarrow} \frac{\dot{\phi}}{\Lambda_{f}}(\overline{f}\gamma^{0}\gamma_{5}f)$$

during inflation (when $\dot{\phi} \neq 0$ violates Lorentz symmetry) modifies the dispersion relation into

$$\omega^{2} = (|\vec{k}|\tau H \pm \lambda)^{2} + m^{2}, \quad \lambda = \frac{\dot{\phi}}{\Lambda_{f}}$$

$$\tau = 0$$

$$\kappa_{1} \frac{\delta \phi}{f} \frac{\delta \phi}{f} \frac{k_{2}}{k_{3} \ll k_{1}, k_{2}}$$

$$\delta \phi}{f} \frac{\delta \phi}{f} \frac{k_{3} \ll k_{1}, k_{2}}{k_{3} \ll k_{1}, k_{2}}$$

Cosmological Collider Physics

Signature of a SM vacuum at high energies

ignature of a dynamical Higgs minimum

Particle production in presence of a chemical potential

Dispersion: $\omega^2 = (k\tau H \pm \lambda)^2 + m^2$, $\lambda = \frac{\dot{\phi}}{\Lambda_f}$, $H < m \ll \lambda$ (pert. $\Rightarrow \lambda \lesssim 60H$) Non-adiabaticity: maximise $e^{-\omega^2/\dot{\omega}} \Rightarrow$ • Production rate $\Gamma \sim \exp\left(-\frac{m^2}{\lambda H}\right)$ Significant production also for m > H, as long as $\lambda \gg H$. 2 Enhancement for $k\tau H \sim \lambda$. • Fermion density: $n \sim k^2 dk \sim \lambda^2 m \Big|_{m \ll H}$. I Two SM fermions get produced at τ_3 $\tau = 0$ $\delta \phi_{k_2}$ $\delta \phi$ $k_3 \ll k_{1} / k_2$ Fermions pair annihilate into two inflatons

< □

Cosmological Collider Physics

Signature of a SM vacuum at high energies 0000000 ignature of a dynamical Higgs minimum

Particle production in presence of a chemical potential

Dispersion: $\omega^2 = (k\tau H \pm \lambda)^2 + m^2$, $\lambda = \frac{\dot{\phi}}{\Lambda_f}$, $H < m \ll \lambda$ (pert. $\Rightarrow \lambda \lesssim 60H$) Non-adiabaticity: maximise $e^{-\omega^2/\dot{\omega}} \Rightarrow$ • Production rate $\Gamma \sim \exp\left(-\frac{m^2}{\lambda H}\right)$ Significant production also for m > H, as long as $\lambda \gg H$. 2 Enhancement for $k\tau H \sim \lambda$. • Fermion density: $n \sim k^2 dk \sim \lambda^2 m \Big|_{m \ll H}$. • Two SM fermions get produced at τ_3 $(\omega \sim m, k\tau \sim \lambda)$ $\tau = 0$ \Rightarrow External soft inflaton $\delta \phi(k_3)$ $\delta \phi_{k_2}$ $\delta \phi$ $k_3 \ll k_1, k_2$ Fermions pair annihilate into two inflatons

Cosmological Collider Physics

Signature of a SM vacuum at high energies

ignature of a dynamical Higgs minimum

Particle production in presence of a chemical potential

Dispersion: $\omega^2 = (k\tau H \pm \lambda)^2 + m^2$, $\lambda = \frac{\dot{\phi}}{\Lambda_f}$, $H < m \ll \lambda$ (pert. $\Rightarrow \lambda \lesssim 60H$) Non-adiabaticity: maximise $e^{-\omega^2/\dot{\omega}} \Rightarrow$ • Production rate $\Gamma \sim \exp\left(-\frac{m^2}{\lambda H}\right)$ Significant production also for m > H, as long as $\lambda \gg H$. 2 Enhancement for $k\tau H \sim \lambda$. • Fermion density: $n \sim k^2 dk \sim \lambda^2 m \Big|_{m \ll H}$. • Two SM fermions get produced at τ_3 $(\omega \sim m, k\tau \sim \lambda)$ $\tau = 0$ \Rightarrow External soft inflaton $\delta \phi(k_3)$ $\delta \phi_{k_2}$ Redshift: at later times τ_1 , τ_2 $(\omega \sim \lambda, k\tau \sim 0)$ $\delta \phi$ Oscillation frequency $(k_3/k_1)^{2i\lambda/H}$ $k_3 \ll k_1, k_2$ Fermions pair annihilate into two inflatons

Cosmological Collider Physics

Signature of a SM vacuum at high energies

ignature of a dynamical Higgs minimum

Particle production in presence of a chemical potential

Dispersion: $\omega^2 = (k\tau H \pm \lambda)^2 + m^2$, $\lambda = \frac{\dot{\phi}}{\Lambda_f}$, $H < m \ll \lambda$ (pert. $\Rightarrow \lambda \lesssim 60H$) Non-adiabaticity: maximise $e^{-\omega^2/\dot{\omega}} \Rightarrow$ • Production rate $\Gamma \sim \exp\left(-\frac{m^2}{\lambda H}\right)$ Significant production also for m > H, as long as $\lambda \gg H$. 2 Enhancement for $k\tau H \sim \lambda$. • Fermion density: $n \sim k^2 dk \sim \lambda^2 m \Big|_{m \ll H}$. • Two SM fermions get produced at τ_3 $(\omega \sim m, k\tau \sim \lambda)$ $\tau = 0$ \Rightarrow External soft inflaton $\delta\phi(k_3)$ $\delta \phi_{k_2}$ Redshift: at later times τ_1 , τ_2 $(\omega \sim \lambda, k\tau \sim 0)$ $\delta \phi$ Oscillation frequency $(k_3/k_1)^{2i\lambda/H}$ $k_3 \ll k_1, k_2$ Fermions pair annihilate into two inflatons

 $\Rightarrow \text{External hard inflatons } \delta\phi(k_1)\delta\phi(k_2)$ No big contribution to 2pt function: ff can only pair annihilate.

< □

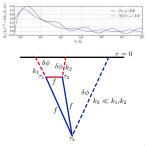
Cosmological Collider Physics

Signature of a SM vacuum at high energies

iignature of a dynamical Higgs minimum

Summary: fermion production in presence of chemical potential

- The bispectrum of density perturbations can tell us of heavy particles interacting with the inflaton.
- The squeezed limit $(k_3 \ll k_1 \sim k_2)$ could display non-analytic contributions $(k_3/k_1)^{i\nu}$.
- These contributions can be large if they come from an interaction


$$\frac{\partial_{\mu}\phi}{\Lambda_f}(\overline{f}\gamma^{\mu}\gamma_5 f) \longrightarrow \lambda(\overline{f}\gamma^0\gamma_5 f)$$

The signal is present for $\lambda \gg m > H$.

• Amplitude and frequency of the oscillations inform us of coupling and mass of the particle in Hubble units.

[Credit: Zhong-Zhi Xianyu]

- Higgs potential beyond the tree level
- Implications of living in a false vacuum
- Possible observational signatures

2 Cosmological Collider Physics

- Bispectrum and inflationary universe
- Oscillatory features as a clue for heavy particles during inflation
- Chemical potential for fermions

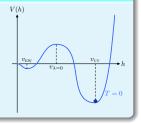
Signature of a SM vacuum at high energies

- A high energy minimum in the Higgs potential
- Contribution of SM fermions to cosmological collider
- Distinguishing feature of the signal and implications

Signature of a dynamical Higgs minimum

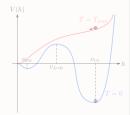
- A minimal signal from the SM
- Contribution of fermion density to Higgs potential
- Distinguishing feature of the signal

Cosmological Collider Physics


Signature of a SM vacuum at high energies

ignature of a dynamical Higgs minimum

A new cosmological Higgstory

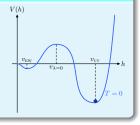

During inflation

- Existence of a new Higgs minimum at v_{UV} ≥ H, generated by higher order operators (e. g. |H|⁶/Λ_H²).
- The Higgs field fluctuates beyond the barrier and rolls to the new minimum.
- SM fermions during inflation have a mass $yv_{\scriptscriptstyle \rm UV}.$

After inflation

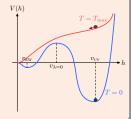
- Contributions from the thermal bath to the Higgs potential lift the UV minimum if $T_{\rm max}>v_{\rm \scriptscriptstyle UV}.$
- The background field rolls back to the origin, and its amplitude quickly decreases due to interactions with the thermal bath.
- The Higgs field settles in the EW vacuum.

Cosmological Collider Physics


Signature of a SM vacuum at high energies

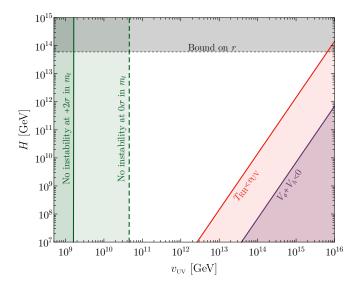
ignature of a dynamical Higgs minimum

A new cosmological Higgstory

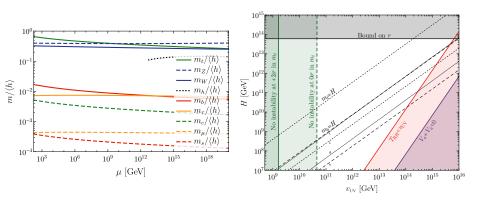

During inflation

- Existence of a new Higgs minimum at v_{UV} ≥ H, generated by higher order operators (e. g. |H|⁶/Λ_H²).
- The Higgs field fluctuates beyond the barrier and rolls to the new minimum.
- SM fermions during inflation have a mass $yv_{\scriptscriptstyle \rm UV}.$

After inflation


- Contributions from the thermal bath to the Higgs potential lift the UV minimum if $T_{\rm max} > v_{\rm \scriptscriptstyle UV}$.
- The background field rolls back to the origin, and its amplitude quickly decreases due to interactions with the thermal bath.
- The Higgs field settles in the EW vacuum.

19 / 32

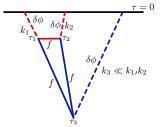


Cosmological Collider Physic: DOOOOOOO Signature of a SM vacuum at high energies

Signature of a dynamical Higgs minimum 000000

SM fermions span many orders of magnitude in mass

We easily have one or two SM fermions with mass close to Hubble.


• The lowest order coupling of SM fermions to a shift-symmetric inflaton contains

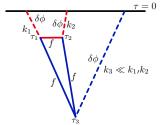
$$c_{f_i} \frac{\partial_\mu \phi}{\Lambda_f} (\overline{f}_i \gamma^\mu \gamma_5 f_i)$$

- This term is a chemical potential for SM fermions.
- The result for the contribution to the squeezed bispectrum is [Chen, Wang, Xianyu '18; Hook, Huang, DR '19

$$(\mu \equiv \sqrt{\lambda^2 + m^2}, \ \widetilde{x} \equiv x/H)$$

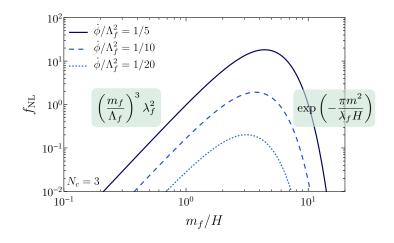
$$S(k_1, k_2, k_3) \overset{\lambda \gg m}{\simeq} f_{\rm NL}^{(\rm clock)} \left(\frac{k_3}{k_1}\right)^{2-2i\tilde{\mu}} + \cdots$$
$$f_{\rm NL}^{(\rm clock)} \approx \frac{N_c}{6\pi} \mathcal{P}_{\zeta}^{-1/2} \left(\frac{m}{\Lambda_f}\right)^3 \tilde{\lambda}^2 \frac{e^{\pi \tilde{\lambda}} \tilde{\mu} \Gamma(-i\tilde{\mu})^2 \Gamma(2i\tilde{\mu})^3}{2\pi \Gamma(i(\tilde{\lambda} + \tilde{\mu}))^3 \Gamma(i(\tilde{\mu} - \tilde{\lambda}) + 1)}$$

• The lowest order coupling of SM fermions to a shift-symmetric inflaton contains


$$c_{f_i} \frac{\partial_\mu \phi}{\Lambda_f} (\overline{f}_i \gamma^\mu \gamma_5 f_i)$$

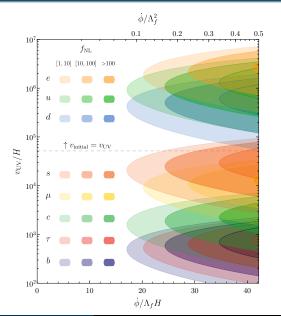
- This term is a chemical potential for SM fermions.
- The result for the contribution to the squeezed bispectrum is

[Chen, Wang, Xianyu '18; Hook, Huang, DR '19]


$$(\mu\equiv\sqrt{\lambda^2+m^2},\ \widetilde{x}\equiv x/H)$$

$$S(k_1, k_2, k_3) \overset{\lambda \gg m}{\simeq} f_{\rm NL}^{(\rm clock)} \left(\frac{k_3}{k_1}\right)^{2-2i\tilde{\mu}} + \cdots$$
$$f_{\rm NL}^{(\rm clock)} \approx \frac{N_c}{6\pi} \mathcal{P}_{\zeta}^{-1/2} \left(\frac{m}{\Lambda_f}\right)^3 \tilde{\lambda}^2 \frac{e^{\pi \tilde{\lambda}} \tilde{\mu} \Gamma(-i\tilde{\mu})^2 \Gamma(2i\tilde{\mu})^3}{2\pi \Gamma(i(\tilde{\lambda} + \tilde{\mu}))^3 \Gamma(i(\tilde{\mu} - \tilde{\lambda}) + 1)}$$

Higgs vacuum metastability	Cosmological Collider Physics	Signature of a SM vacuum at high energies	Signature of a dynamical Higgs minimum
00000	0000000	0000000	000000
Simple strongth	as a function of	face (II and)	



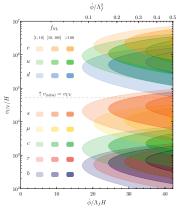
Cosmological Collider Physics

Signature of a SM vacuum at high energies $\circ\circ\circ\circ\circ\circ\circ\circ$

Signature of a dynamical Higgs minimum 000000

Signal strength as a function of λ_f and $v_{\rm UV}/H$

Higgs vacuum metastability	Cosmological Collider Physics	Signature of a SM vacuum at high energies	Signature of a dynamical Higgs minimum		
00000	0000000	000000	000000		
les alles d'energies de les estres de les elements					

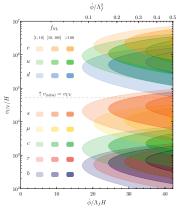

Implications of the detection of a signal

- Two SM fermions could simultaneously contribute to the signal!
- From the amplitudes and frequencies of the oscillations, we can get (\$\tilde{m}_i\$, \$\tilde{\lambda}_i\$) and (\$\tilde{m}_j\$, \$\tilde{\lambda}_j\$).
- The ratio

$$\frac{\widetilde{m}_i}{\widetilde{m}_j} = \frac{y_i}{y_j}$$

can confirm the origin of the signal.

- Implication of a new Higgs minimum at high energies.
- Important implications for models addressing hierarchy problem.
- (At least) two vacua configurations: measure problem? Anthropics?


Higgs vacuum metastability	Cosmological Collider Physics	Signature of a SM vacuum at high energies	Signature of a dynamical Higgs minimum		
00000		○○○○○○●	000000		
Implications of the detection of a signal					

- Two SM fermions could simultaneously contribute to the signal!
- From the amplitudes and frequencies of the oscillations, we can get (\$\tilde{m}_i\$, \$\tilde{\lambda}_i\$) and (\$\tilde{m}_j\$, \$\tilde{\lambda}_j\$).
- The ratio

$$\frac{\widetilde{m}_i}{\widetilde{m}_j} = \frac{y_i}{y_j}$$

can confirm the origin of the signal.

- Implication of a new Higgs minimum at high energies.
- Important implications for models addressing hierarchy problem.
- (At least) two vacua configurations: measure problem? Anthropics?

- Higgs potential beyond the tree level
- Implications of living in a false vacuum
- Possible observational signatures

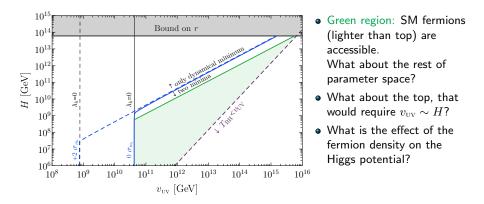
2 Cosmological Collider Physics

- Bispectrum and inflationary universe
- Oscillatory features as a clue for heavy particles during inflation
- Chemical potential for fermions

Signature of a SM vacuum at high energies

- A high energy minimum in the Higgs potential
- Contribution of SM fermions to cosmological collider
- Distinguishing feature of the signal and implications

Signature of a dynamical Higgs minimum

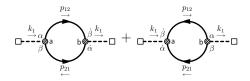

- A minimal signal from the SM
- Contribution of fermion density to Higgs potential
- Distinguishing feature of the signal

Cosmological Collider Physics

ignature of a SM vacuum at high energies

Signature of a dynamical Higgs minimum

A fresh look at the parameter space



< LL .

Higgs vacuum metastability 00000 Cosmological Collider Physics 00000000 Signature of a SM vacuum at high energies

Signature of a dynamical Higgs minimum

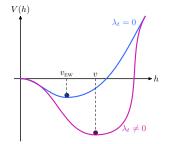
Contribution of the fermion density to the Higgs potential

• We expect a contribution

$$\delta V_h \sim -m_f n_f \sim -\lambda_f^2 m_f^2 \exp\left(-\frac{\pi m_f^2}{\lambda_f H}\right)$$

where the - sign is expected for the contribution of a chemical potential [Benson, Bernstein, Dodelson '91; Linde '90].

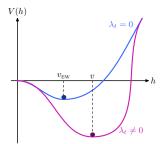
• Result:


$$V_h = -\mu_h^2 |\mathcal{H}|^2 + \lambda_h |\mathcal{H}|^4 - \frac{N_c y_f^2}{\pi^2} \lambda_f^2 |\mathcal{H}|^2 \exp\left[-\frac{\pi y_f^2 |\mathcal{H}|^2}{\lambda_f H}\right]$$

with a dynamical negative mass term during inflation.

Davide Racco

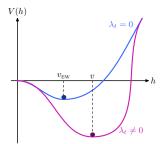
Dynamical generation of a Higgs minimum


- The effect of the fermion density is to enhance EW symmetry breaking.
- The increased fermion mass amplifies their production.
- When the fermion mass becomes too large, the exponential suppression kicks in.

Higgs vacuum metastability Cosmological Collider Physics Signature of a SM vacuum at high energies Signature of a dynamical Higgs minimum 00000 0000000 000000 000000 000000

Dynamical generation of a Higgs minimum

- The effect of the fermion density is to enhance EW symmetry breaking.
- The increased fermion mass amplifies their production.
- When the fermion mass becomes too large, the exponential suppression kicks in.



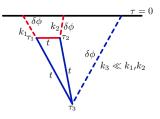
$$V_h = -\mu_h^2 |\mathcal{H}|^2 + \lambda_h |\mathcal{H}|^4 - \frac{N_c y_f^2}{\pi^2} \lambda_f^2 |\mathcal{H}|^2 \exp\left[-\frac{\pi y_f^2 |\mathcal{H}|^2}{\lambda_f H}\right]$$

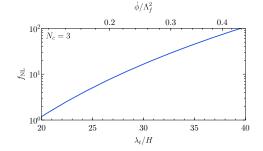
• The dynamically induced mass can dominate the quartic term for $y_f \sim \mathcal{O}(1) \Longrightarrow$ top quark contribution.

Dynamical generation of a Higgs minimum

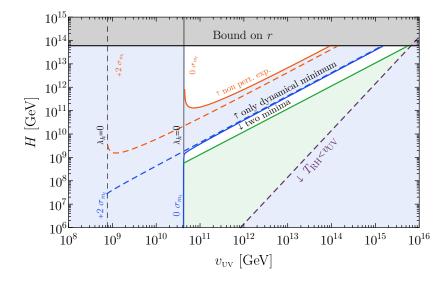
- The effect of the fermion density is to enhance EW symmetry breaking.
- The increased fermion mass amplifies their production.
- When the fermion mass becomes too large, the exponential suppression kicks in.

$$V_h = -\mu_h^2 |\mathcal{H}|^2 + \lambda_h |\mathcal{H}|^4 - \frac{N_c y_f^2}{\pi^2} \lambda_f^2 |\mathcal{H}|^2 \exp\left[-\frac{\pi y_f^2 |\mathcal{H}|^2}{\lambda_f H}\right]$$

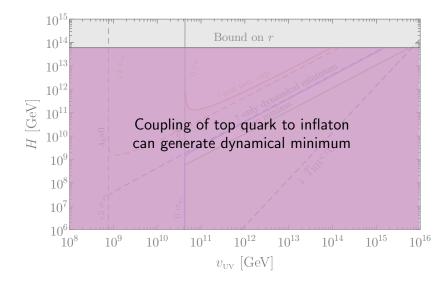

• The Higgs vev is set by the exponential:


$$v\simeq \sqrt{\frac{2\widetilde{\lambda}_t}{\pi y_t^2}}H\,,\quad \frac{m_t}{H}\sim \sqrt{\frac{\widetilde{\lambda}_t}{\pi}}$$

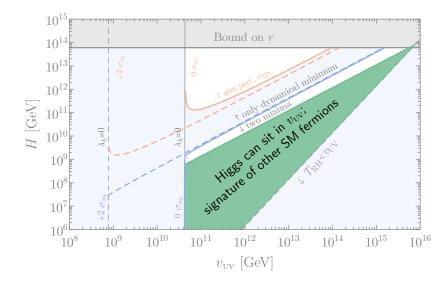
Higgs vacuum metastability 00000 Signature of a SM vacuum at high energies 000000 Signature of a dynamical Higgs minimum 00000 Signature of a dynamical Higgs minimum 0000 Signature of a dynamical Higgs minimum 000 S


• The coupling $\tilde{\lambda}_t = \lambda_t/H$ sets both the mass and the coupling of the top quark for the cosmological collider:

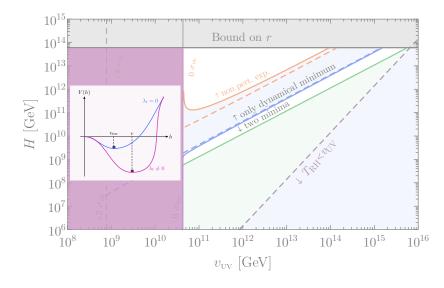
$$\begin{split} S(k_1, k_2, k_3) & \stackrel{k_3 \ll k_1 \sim k_2}{\simeq} f_{\rm NL}^{\rm (clock)} \left(\frac{k_3}{k_1}\right)^{2-2i \widetilde{\lambda}_t} \\ f_{\rm NL}^{\rm (clock)} &\approx \frac{4\sqrt{2}N_c \mathcal{P}_{\zeta}}{3e} \widetilde{\lambda}_t^{13/2} \end{split}$$



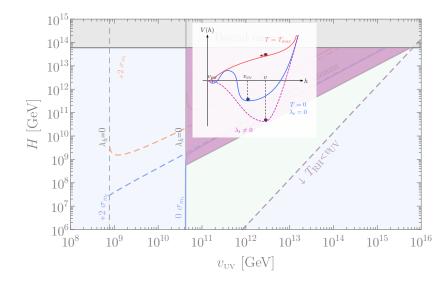
Higgs vacuum metastability	Cosmological Collider Physics	Signature of a SM vacuum at high energies	Signature of a dynamical Higgs minimum
00000	0000000	000000	000000


Higgs		metastability
	00	

Signature of a SM vacuum at high energies 0000000 Signature of a dynamical Higgs minimum

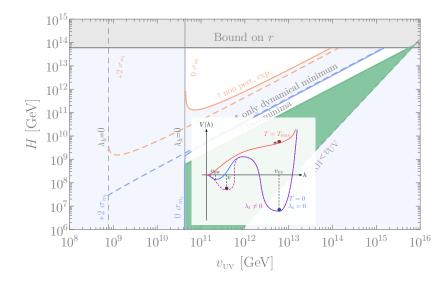

Higgs vacuum	metastability

Signature of a SM vacuum at high energies 0000000 Signature of a dynamical Higgs minimum

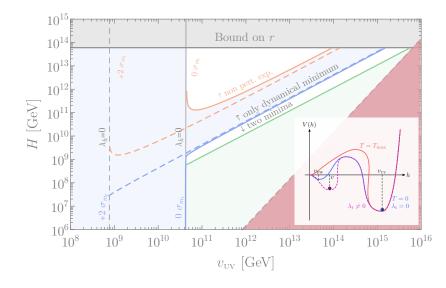

Higgs vacuum	metastability

Signature of a SM vacuum at high energies 0000000 Signature of a dynamical Higgs minimum $\circ \circ \circ \circ \circ \circ \circ$

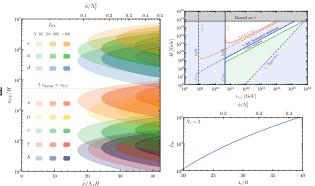
Higgs vacuum	metastability


Signature of a SM vacuum at high energies 0000000 Signature of a dynamical Higgs minimum $\circ \circ \circ \circ \circ \circ \circ$

Higgs vacuum	metastability


Signature of a SM vacuum at high energies

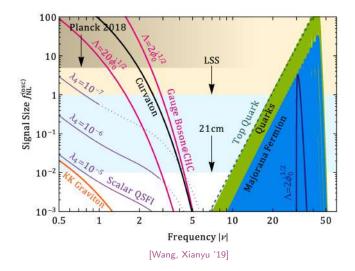
Signature of a dynamical Higgs minimum $\circ \circ \circ \circ \circ \circ \circ$


Higgs vacuum	metastability

Signature of a SM vacuum at high energies 0000000 Signature of a dynamical Higgs minimum $\circ \circ \circ \circ \circ \circ \circ$

Higgs vacuum metastability	Cosmological Collider Physics	Signature of a SM vacuum at high energies	Signature of a dynamical Higgs minimum
00000		0000000	○○○○○●
Conclusions			

- Cosmological collider physics offers a tool for BSM physics.
- The coupling of SM fermions to the inflaton can lead to distinctive and minimal signatures from:
 - a new Higgs minimum at high scales;
 - a dynamical Higgs minimum during inflation.



Thanks for your attention!

Higgs vacuum	metastability

Signature of a SM vacuum at high energies 0000000 ignature of a dynamical Higgs minimum

Prospects for detectability

Higgs vacuum metastability 00000 Cosmological Collider Physics 00000000 ignature of a SM vacuum at high energies

Signature of a dynamical Higgs minimum

Potential signals and effects of other operators

• $\left[c_2 \frac{(\partial_\mu \phi)^2}{\Lambda_{\mathcal{H}}^2} \mathcal{H}^{\dagger} \mathcal{H}\right]$ can lead to a sizeable contribution to the Higgs mass,

but is hard to observe directly: large c_2 implies large Boltzmann suppression. [Kumar, Sundrum '17]

For the case of dynamically generated minimum, its contribution is subleading to the fermion one if $c_2 \lesssim 0.1$ if $\Lambda_f \sim \Lambda_{\mathcal{H}}$.

• $c_1 \frac{\partial_\mu \phi}{\Lambda_H} \mathcal{H}^\dagger \mathcal{D}^\mu \mathcal{H}$ induces a mixing between Higgs and time component of

Z boson, and makes them acquire a mass of order $\widetilde{\lambda}H$ which exponentially reduces the signal. Suppression of $\mathcal{O}_1, \mathcal{O}_2$ ultimately related to hierarchy problem. [Kumar, Sundrum '17]

• $c_G \frac{\phi}{\Lambda_G} G \widetilde{G}$ (with G a generic SM gauge boson) is also a derivative coupling. If the fermion current coupling to ϕ is anomalous, we can expect a strength $\frac{\dot{\phi}}{\Lambda_G H} \sim \frac{\alpha}{4\pi} \frac{\dot{\phi}}{\Lambda_f H} \lesssim 1$. In absence of anomalies, it is more suppressed. Can lead to copious particle production [Anber, Sorbo '09; Barnaby, Pajer, Peloso '11]

acuum metastability Cosmological Collider Physics Signat O 00000000 000

Signature of a SM vacuum at high energies 0000000 ignature of a dynamical Higgs minimum

UV motivation for assuming equal couplings $|c_{f_i}|$

The only flavour universal anomaly-free U(1)' extension of the Standard Model is a linear combination of $U(1)_Y$ and $U(1)_{B-L}$.

	SU(3)	SU(2)	$U(1)_Y$	$U(1)_{B-L}$	U(1)'
$Q = \begin{pmatrix} u \\ d \end{pmatrix}$	3	2	$\frac{1}{6}$	$+\frac{1}{3}$	$\frac{1}{6}\cos\theta + \frac{1}{3}\sin\theta$
u^c	3	1	$-\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{2}{3}\cos\theta - \frac{1}{3}\sin\theta$
d^c	3	1	$\frac{1}{3}$	$-\frac{1}{3}$	$\frac{1}{3}\cos\theta - \frac{1}{3}\sin\theta$
$L = \begin{pmatrix} \nu \\ e \end{pmatrix}$	1	2	$-\frac{1}{2}$	-1	$-\frac{1}{2}\cos\theta - \sin\theta$
e^{c}	1	1	1	+1	$\cos\theta+\sin\theta$

The coefficients c_V and c_A are obtained via $c_V = \frac{c_L + c_R}{2}, c_A = \frac{-c_L + c_R}{2}$.

SM fermion f	Vector current	Axial current
up quarks down quarks leptons	$\frac{\frac{5}{12}\cos\theta + \frac{1}{3}\sin\theta}{-\frac{1}{12}\cos\theta + \frac{1}{3}\sin\theta} \\ -\frac{3}{4}\cos\theta - \sin\theta}$	$\frac{\frac{1}{4}\cos\theta}{-\frac{1}{4}\cos\theta}$ $-\frac{1}{4}\cos\theta$

3