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Quadratic Massive gravity in Minkowski spacetime

The quadratic action for metric perturbations gµν = ηµν + hµν

S =
1

2

∫
d4x
√
−g
[
−R+

m2
g

4

(
h2 − hµνhµν

)
︸ ︷︷ ︸

Fierz-Pauli (FP)
mass term (1939)

]

is ghost-free
propagates 5 massive degrees of freedom

PROBLEMS SOLUTIONS

breaks the diffeomorphism introduction of four Stückelberg
invariance of general relativity (Higgs) fields

leads to unacceptable non-linear modifications
observational consequences to FP mass term
(van Dam, Veltman, Zakharov 1970) (Vainshtein 1972)

propagates a ghost around any define hµν ≡ gµν − g̃µν
other backgrounds g̃µν 6= ηµν
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Stückelberg trick / Higgs massive gravity

Any theory of massive gravity can be represented as Einstein gravity interacting
with four scalar fields φA with A = 0, 1, 2, 3:

S =
1

2

∫
d4x
√
−g
[
−R+

m2
g

4
LFP

(
φA, gµν

)]

The interaction term LFP is a function of a diffeomorphism invariant scalar
h̄AB = gµν∂µφ

A∂νφ
B − ηAB

such that the quadratic action reduces to the FP mass term around the
backgrounds

gµν = ηµν , φA = xµδAµ .

The minimal such generalization of the Fierz-Pauli action is

LFP = h̄2 − h̄ABh̄BA

diffeomorphism invariant propagates 6 degrees of freedom
exhibits Vainshtein mechanism strongly coupled at very low scale
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Outline

1. Vainshtein Mechanism and Strong Coupling → Λ3 theories

2. Cosmological Solutions with Flat Reference Metric

3. Massive Gravity with Curved Reference Metric
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Gravitational field from a massive source

We focus on the scalar metric and matter perturbations in the longitudinal gauge

METRIC SCALAR FIELDS

gµν = ηµν + hµν φA = xµδAµ + χA

h00 = 2φ χ0 = χ0

h0i = 0 χi = ∂iπ = π,i
hij = 2ψδij

Hence the metric takes the form:

ds2 = (1 + 2φ) dt2 − (1− 2ψ) δikdx
idxk

In General Relativity, in the presence of a static spherically symmetric source M0

ψ = φ, ∆φ = T 00/2 ⇒ φ ∼ −M0
r
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Gravitational field from a massive source

In Fierz-Pauli massive gravity

LFP = h̄2 − h̄AB h̄
B
A

the linearized constraints and equations of motion are:

∆ψ =
m2
g

2
(3ψ + ∆π) + T00

2
∆
(
ψ − φ−m2

gπ
)

= 0,

∆χ0 = 0 ∆ (2ψ − φ) = 0

This implies:

ψ = φ/2 ⇒ φ = −4
3
M0
r e
−mgr

even when mg → 0 ⇒ vDVZ discontinuity!

(idea of the picture: Creminelli 2011)
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Vainshtein scale of the nonlinear expansion

Beyond linear order in matter perturbations the equations are modified:

2ψ − φ+O (1) ∂4π2 = 0

ψ − φ−m2
gπ = 0

where π,ik, ∆π → ∂2π � 1. In the spherically symmetric case ∂n ∼ r−n

⇒ ψ +m2
gπ +O (1) r−4π2 ' 0

At the Vainshtein scale all the terms become comparable:

ψ ∼ m2
gπ ∼ O (1) r−4π2.

For ψ ∼ −M0/r this gives the well known result for the Vainshtein scale (1972)

RV '
(

M0

M2
Pm4

g

)1/5
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Smooth limit to General Relativity

ABOVE THE VAINSHTEIN SCALE BELOW THE VAINSHTEIN SCALE

r � RV r � RV

ψ +m2
gπ +((((

(
O (1) r−4π2 ' 0 ψ +��m

2
gπ +O (1) r−4π2 ' 0

ψ − φ = −ψ
[
1−O(1)

(
RV
r

)5
]

ψ − φ = O(1)ψ
(

r
RV

)5/2

(
∆−m2

g

)
φ = 4

3

(
T00

2

)
∆φ = T00

2

Yukawa decay! GR restored up to corrections δφ
φ
∼
(

r
RV

)5/2

M0

RV

1/mg

Question remains:
Does a single

everywhere non-singular solution
matching both asymptotics exist?

YES!
Babichev, Deffayet, Ziour (2010)
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Strong coupling

In terms of the canonically normalized fields φ̂, ψ̂ the dominant terms in the
cubic action for the field π̂ become

Sπ̂ ⊃
∫
d4x

{
∆π̂(2ψ̂ − φ̂) +

1

2

1

MPm4
g

(
∆π̂π̂,ikπ̂,ik − π̂,ikπ̂,kj π̂,ji

)
+ . . .

}

⇒ The theory becomes strongly coupled above the scale Λ5 = (MPm
4
g)1/5!

Arkani-Hamed, Georgi, Schwartz (2003)

⇒ The full quantum theory is needed to describe physics around
spherically symmetric sources below the radius

r∗ =

(
M0

MP

)1/3 1

Λ5
� RV =

(
M0

MP

)1/5 1

Λ5
!

No region of applicability of the Vainshtein mechanism?!

Way out: Raise the energy cutoff by adding appropriate counterterms which
eliminate the self-coupling. In this way the Vainshtein radius can be

lowered order by order!
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Λ3 theories

For a Langrangian with the highest self coupling L ⊃ (∂2π)n, the corresponding
Vainshtein radius is

RV =

 M0

M2
Pm

2(n−1)
n−2

g


n−2
3n−4

, Λ(n) =

(
MPm

2(n−1)
n−2

g

) n−2
3n−4

and the corrections to the gravitational potential within r � RV radius are

δφ

φ
∼
(

r

RV

)3n−4
n−1

LA, Chamseddine, Mukhanov (2010)

The minimal possible scale at n→∞: R∞V = 1
Λ3

(
M0
MP

)1/3
, Λ3 = (MPm

2
g)1/3

⇒ Λ3 is reached after the resummation!
Strong coupling scale in Λ3 theories: r∗ = 1

Λ3
� RV

⇒ Vainshtein mechanism works!
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dRGT Resummation of massive gravity
de Rham, Gabadadze, Tolley (2010)

Massive gravity can be resummed into infinite series

Kµν =
(√

g−1f
)µ
ν
− δµν

where fµν is the flat reference metric:

fµν = ∂µφ
A∂νφ

BηAB

and the square root matrix is defined as:(√
g−1f

)µ
λ

(√
g−1f

)λ
ν

= gµλfλν

The resulting non-linear action is

SdRGT = −1

2

∫
d4x
√
−gR+m2

∫
d4x
√
−g [e2(K) + α3e3(K) + α4e4(K)]

a finite sum of the characteristic polynomials

e2(K) =
1

2

(
[K]

2 − [K2
]
)

e3(K) =
1

6

(
[K]

3 − 3[K][K2
] + 2[K3

]
)

e4(K) =
1

24

(
[K]

4 − 6[K]
2
[K2

] + 3[K2
]
2

+ 8[K][K3
]− 6[K4

]
)
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Rewriting the Action
Hassan, Rosen (2011)

The action can be rewritten in a slightly simpler form by noticing

det (I +K) =
4∑

n=0

αn

en(λ1, . . . , λ4) =
4∑

n=0

αn

en(K),

where λi are the eigenvalues of the matrix K.

⇒ The action has a structure of a deformed determinant.
Due to the definition: K =

√
g−1f − I the action can be rewritten

S = −
1

2

∫
d4x
√
−g

R− 2m2
3∑
n=0

βnen
(√

g−1f
)+m2

∫
d4x
√
−gβ4e4

(√
g−1f

)
︸ ︷︷ ︸

=β4
√
− det f

The new coefficients can be expressed
through the old coefficients βn = βn(αi).
In particular β0 = 6− 4α3 + α4 6= 0.

Cosmological constant term
for the reference metric:

This can be dropped since
the reference metric is

non-dynamic
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Special Choice of Coefficients

There is a special choice of coefficients

α3 =
2− C
1− C

; α4 =
3− 3C + C2

(1− C)2

for which
Schwarzschield-de Sitter solutions Nieuwenhuizen (2011)

static black hole solutions Gruzinov, Mirbabayi (2011)

de Sitter and FRW solutions Nieuwenhuizen; Chamseddine, Volkov (2011)

bigravity equations of motion decouple Volkov (2011)

the mass term takes the very simple form (no one noticed)

Smass = m2

∫
d4x
√
−g
[
(1− C) +

1

C(1− C)2
det
(√

g−1f − CI
)]
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Square Root of the Isotropic Ansatz

We consider the isotropic metric

ds2 = N2(t, r)dt2 − a2(t, r)
(
dr2 + r2dΩ2

)
and take the most general spherically symmetric scalar field configuration

φ0 = f(r, t),

φi = g(r, t)ni, ni ≡ (sin θ cosφ, sin θ sinφ, cos θ)

D’Amico et al. (2011)

where φA are the Stückelberg scalars of the reference metric fµν = ∂µφA∂νφBηAB

g!1 f

What is a square root of a matrix?
For a diagonalizable n× n matrix A

it holds that Ak = PDkP−1

where P is the matrix of eigenvectors
and D = diag(λ1, . . . , λn).
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Square Root for the Isotropic Ansatz

In this case the square root can be taken explicitly:

(√
g−1f

)µ
ν

=



1√
X

[
ḟ2−ġ2
N2 +

√
λ1λ2

]
− 1√

X

1
N2

(
ġg′ − ḟf ′

)
0 0

1√
X

1
a2

(
ġg′ − ḟf ′

)
1√
X

[
−f ′2+g′2

a2
+
√
λ1λ2

]
0 0

0 0 g/ar 0
0 0 0 g/ar


where

X =

(
ḟ

N
+ µ

g′

a

)2

−
(
ġ

N
+ µ

f ′

a

)2

with µ = sgn(g′ḟ − f ′ġ)

and λ1,2 denote the eigenvalues of the upper 2× 2 matrix and can be expressed as

√
λ1 =

1

2

(√
X+ +

√
X−
)

√
λ2 =

1

2
µ
(√

X+ −
√
X−
)
, X± ≡ Xµ=±1
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Equations of Motion

Varying the action with respect to the Stückelberg fields f and g yields the
equations of motion

of the field f

∂t

[
a
2
r
2
(
g

ar
− C

)2
{

1
√
X

(C −
√
X)µg

′
+

C
√
X

aḟ

N

}]
−

−∂r
[
aNr

2
(
g

ar
− C

)2 { 1
√
X

(C −
√
X)µ

aġ

N
+

C
√
X
f
′
}]

= 0,

and of the field g

∂t

[
a
2
r
2
(
g

ar
− C

)2 { 1
√
X

(C −
√
X)µf

′
+

C
√
X

aġ

N

}]
−

−∂r

[
aNr

2
(
g

ar
− C

)2
{

1
√
X

(C −
√
X)µ

aḟ

N
+

C
√
X
g
′
}]
−

−2a
2
Nr

[
C(C −

√
X) +

µ

aN

(
g
′
ḟ − f ′ġ

)]
= 0

The equation of motion for the field f is satisfied if g = Car.
The equation of g gives an equation for f which is especially simple on the solution.
However an explicit solution is not required for computing the T (φ)

µν .
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[
a
2
r
2
(
g

ar
− C

)2
{

1
√
X

(C −
√
X)µg

′
+

C
√
X

aḟ

N

}]
−

−∂r
[
aNr

2
(
g

ar
− C

)2 { 1
√
X

(C −
√
X)µ

aġ

N
+

C
√
X
f
′
}]

= 0,

and of the field g

∂t

[
a
2
r
2
(
g

ar
− C

)2 { 1
√
X

(C −
√
X)µf

′
+

C
√
X

aġ

N

}]
−

−∂r

[
aNr

2
(
g

ar
− C

)2
{

1
√
X

(C −
√
X)µ

aḟ

N
+

C
√
X
g
′
}]
−

−2a
2
Nr

[
C(C −

√
X) +

µ

aN

(
g
′
ḟ − f ′ġ

)]
= 0
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Energy-Momentum Tensor

Variation of the action with respect to the metric leads to the modified

Gµν = T
(φ)
µν + T

(m)
µν , 8πGN ≡ 1

where Gµν is the Einstein tensor, T (φ)
µν is the effective stress tensor due to the

mass term, and T (m)
µν is the usual matter tensor.

For any isotropic distribution of the matter the effective energy-momentum tensor
on the solution g = Car takes the form of a cosmological constant

independently on the solution of the field f !

T
(φ)
tt = −m2N2(1− C)

T
(φ)
rr = m2a2(1− C)

T
(φ)
θθ =

T
(φ)
φφ

sin2 θ
= m2a2r2(1− C)

for C = 3
2
see D’Amico et al. (2011);

for arbitrary α3, α4 see Gratia, Hu, Wyman (2012)
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Vanishing of Kinetic Terms

By careful inspection of the square root matrix in the case of isotropic ansatz

(√
g−1f

)µ
ν

=


a11(ḟ , ġ, . . . ) a12(ḟ , ġ, . . . ) 0 0

a21(ḟ , ġ, . . . ) a22(ḟ , ġ, . . . ) 0 0
0 0 g/ar 0
0 0 0 g/ar



we see that all the time derivatives of the Stückelberg fields f and g
enter only in the upper-left 2× 2 matrix!

It is useful to split the action for the spherically symmetric scalar fields

Smass = m2

∫
d4x
√
−g

(1− C) +
1

C(1− C)2
det
(√

g−1f − CI
)

︸ ︷︷ ︸
=( gar−C)2detA


where A ≡

(√
g−1f − CI

)
2×2

contains all the time derivatives!
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Vanishing of Kinetic Terms

The isotropic ansatz allows also for arbitrary isotropic scalar field perturbations

f(t, r) = f0(t, r) + δf(t, r), g(t, r) = g0(t, r) + δg(t, r)

and spherically symmetric perturbations for example around the Friedmann
solution

N2(t, r) = 1 + 2φ(t, r)

a2(t, r) = a2(t) [1− 2ψ(t, r)]

Gratia, Hu, Wyman (2012)

We see however that on the scalar field solution g0 = Car the action for the
perturbations δg, δf becomes schematically

Smass = m2

∫
d4x
√
−g
[

(1− C) +
1

C(1− C)2

(
δg

ar

)2

detA
(
ḟ0 + δḟ , ġ0 + δġ, . . .

)]

⇒ The isotropic scalar field perturbations have vanishing kinetic terms!

for more details: Koyama et al. (2011); Mukohyama et al. (2012)
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"Massive spin-2 particle" on curved background

What is it?

“Spin family”, Julian Voss-Andreae (2009)
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"Massive spin-2 particle" on curved background

In Lorentz invariant spacetime there is a rigid definition of the mass of
the particle:

m2 ≡ −ηµνpµpν = E2 − ~p2

⇒ Under the little group transformations a particle with spin j belongs to a
representation of dimension 2j + 1.
⇒ Spin-2 particle has 5 degrees of freedom.

On the other hand consider a free scalar field obeying (� +m2)φ = 0.
Expanded in the Fourier series

∑
k φke

ikx its modes satisfy the dispersion
relation −ω2 + ~k2 +m2 = 0.

⇒ ”Alternative” definition of mass!

Combine the two! ⇒ Define a massive spin-2 particle on curved
background such that

it has 5 degrees of freedom and
they all obey the same equation of motion (�g +m2)φ = 0 and thus
have equal dispersion relations
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Non-Minkowski solutions of dRGT

We have seen that the Stückelberg scalars φA have their own effective EMT

T
(φ)
µν ≡

2
√
−g

δSmass

δgµν
= −

m2

2
gµν

(
[K]2 −

[
K2
])

+
m2

2
Kαβ

δKλρ
δgµν

[
δβαδ

ρ
λ − δ

ρ
αδ
β
λ

]
.

⇒ a whole zoo of different non-trivial solutions{∼
gµν 6= ηµν , φ̃A

}
!

How do the metric excitations around these solutions behave?
Split the field Kµν as Kµν =

∼
K µν + δKµν with

∼
K µν = δµν −

√
∼
g µλ∂λφ̃A∂ν φ̃BηAB

and observe that if
∼
K µν 6= 0 ⇒ the Fierz-Pauli structure is lost!

Demand that
∼
K µν = 0 ⇔ ∼

g µν(x)
∂φ̃A

∂xµ
∂φ̃B

∂xν
= ηAB

This is a coordinate transformation: curved → flat
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Generalization of the Stückelberg trick LA (2011)

Replace the Minkowski metric by a set of scalar functions as

ηAB → f̄AB(φ)

Then define
h̄AB ≡ gµν(x)∂µφ

A∂νφ
B − f̄AB(φ)

with
f̄AB(φ) ≡ ∼g

µν
(φ)δAµ δ

B
ν .

⇒ the old story: LFP = h̄2 − h̄AB h̄
B
A !

The scalar field “distances” are now measured by the “metric” f̄AB ,
and the indices in the scalar field space have to be raised and lowered as

φB ≡ f̄ABφA

Lagrangian is invariant under the isometries of the metric f̄AB !
The nonlinear dRGT completion can be written in terms of

Kµν = δµν −
√
gµλ∂λφA∂νφB f̄AB(φ)︸ ︷︷ ︸

=
√
gµλfλν

.



Motivation Λ3 / dRGT theories Flat Reference Metric Curved Reference Metric Conclusions

Example: massive graviton on de Sitter spacetime

Consider spatially flat de Sitter metric
∼
g
µν

= a−2(η)ηµν with a(η) = −1/(Hη).

⇒ The scalar field metric has to be chosen as f̄AB(φ0) = (Hφ0)2ηAB

⇒ The FP mass term

LFP =gµνgαβ∂µφ
A∂νφ

B∂αφ
C∂βφ

D [ηABηCD − ηBCηAD]−

− 6(Hφ0)2gµν∂µφ
A∂νφ

BηAB + 12(Hφ0)4

diffeomorphism invariant

NOT invariant under the shifts φA → φA + λA

invariant under φA → Λ̂ABφ
B such that Λ̂AC Λ̂BD f̄AB(φ)→ f̄CD(φ)

gives 5 degrees of freedom qi for massive graviton each of which satisfy

(�dS +m2)qi = 0 ⇔ (∂2
η + 2H∂η +m2)qi = 0

In terms of physical time dt = a(η)dη:

q̈i −
∆

a2
qi +m2

eff qi = 0, m2
eff = m2 −

9

4
H2

Deser and Waldron (2001)
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Conclusions

Λ3 / dRGT theories are non-linear massive gravity theories with working
Vainshtein mechanism and with the highest achievable strong coupling scale
General relativity can be restored around static spherically symmetric
massive sources up to corrections to the Newtons potential δφ/φ ∼ (r/RV )3

In dRGT massive gravity with flat reference metric and an external isotropic
matter distribution, the effective energy-momentum tensor due to the mass
term takes the form of a cosmological constant
The isotropic perturbations of the scalar fields have vanishing quadratic
kinetic terms and signal towards strong coupling

A diffeomorphism invariant Fierz-Pauli mass term can be constructed on
arbitrary background by the use of four scalar fields
BUT: on each background the generally covariant theory is a fundamentally
different theory with different symmetries
No single unified theory of massive gravity exists such that the graviton
always behaves as a massive spin-2 particle around any background metric

Thank you for your attention!
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