Motivation	Λ_3 / dRGT theories	Flat Reference Metric	Curved Reference Metric	Conclusions
000	000000	0000000	00000	0

Massive Gravity on Cosmological Backgrounds

Lāsma Alberte

ASC, Ludwig-Maximilians University Munich

Geneva University, 7th of December 2012

in collaboration with A. Chamseddine and V. Mukhanov

ション ふゆ ア キョン キョン しょうく

 Motivation
 A3 / dRGT theories
 Flat Reference Metric
 Curved Reference Metric
 Conclusions

 •00
 0000000
 0000000
 000000
 000000
 0

QUADRATIC MASSIVE GRAVITY IN MINKOWSKI SPACETIME

The quadratic action for metric perturbations $g^{\mu\nu} = \eta^{\mu\nu} + h^{\mu\nu}$

$$S = \frac{1}{2} \int d^4x \sqrt{-g} \left[-R + \underbrace{\frac{m_g^2}{4} \left(h^2 - h_{\mu\nu} h^{\mu\nu}\right)}_{\text{Fierz-Pauli (FP)}} \right]_{\text{mass term (1939)}}$$

• is ghost-free

propagates 5 massive degrees of freedom

PROBLEMS

- breaks the diffeomorphism invariance of general relativity
- leads to unacceptable observational consequences (van Dam, Veltman, Zakharov 1970)
- propagates a ghost around any other backgrounds $\tilde{g}^{\mu\nu} \neq \eta^{\mu\nu}$

SOLUTIONS

• introduction of four Stückelberg (Higgs) fields

- non-linear modifications to FP mass term (Vainshtein 1972)
- define $h^{\mu\nu} \equiv g^{\mu\nu} \tilde{g}^{\mu\nu}$

Motivation 000	$\Lambda_3~/~{ m dRGT}~{ m theories}$ 0000000	Flat Reference Metric 00000000	Curved Reference Metric	Conclusions 0

STÜCKELBERG TRICK / HIGGS MASSIVE GRAVITY

Any theory of massive gravity can be represented as Einstein gravity interacting with four scalar fields ϕ^A with A = 0, 1, 2, 3:

$$S = \frac{1}{2} \int d^4x \sqrt{-g} \left[-R + \frac{m_g^2}{4} \mathcal{L}_{FP} \left(\phi^A, g^{\mu\nu} \right) \right]$$

The interaction term \mathcal{L}_{FP} is a function of a diffeomorphism invariant scalar

$$\bar{h}^{AB} = g^{\mu\nu}\partial_{\mu}\phi^{A}\partial_{\nu}\phi^{B} - \eta^{AB}$$

such that the quadratic action reduces to the FP mass term around the backgrounds

$$g^{\mu\nu} = \eta^{\mu\nu}, \qquad \phi^A = x^\mu \delta^A_\mu.$$

The minimal such generalization of the Fierz-Pauli action is

$$\mathcal{L}_{FP} = \bar{h}^2 - \bar{h}_B^A \bar{h}_A^B$$

- diffeomorphism invariant
- exhibits Vainshtein mechanism
- propagates 6 degrees of freedom
- strongly coupled at very low scale

э

Sac

$\begin{array}{c} \text{Motivation} \\ \text{OO} \bullet \end{array}$	$\Lambda_3~/~{ m dRGT}~{ m theories}$ 0000000	Flat Reference Metric 00000000	Curved Reference Metric	Conclusions 0
OUTLIN	E			

1. Vainshtein Mechanism and Strong Coupling $\rightarrow \Lambda_3$ theories

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ = のへぐ

2. Cosmological Solutions with Flat Reference Metric

3. Massive Gravity with Curved Reference Metric

Motivation 000	Λ_3 / dRGT theories	Flat Reference Metric 00000000	Curved Reference Metric	Conclusions 0
Outline	,			

1. Vainshtein Mechanism and Strong Coupling $\to \Lambda_3$ theories

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

2. Cosmological Solutions with Flat Reference Metric

3. Massive Gravity with Curved Reference Metric

Motivation	Λ_3 / dRGT theories	Flat Reference Metric	Curved Reference Metric	Conclusions
000	000000	0000000	00000	0

GRAVITATIONAL FIELD FROM A MASSIVE SOURCE

We focus on the scalar metric and matter perturbations in the longitudinal gauge

METRICSCALAR FIELDS $g^{\mu\nu} = \eta^{\mu\nu} + h^{\mu\nu}$ $\phi^A = x^{\mu}\delta^A_{\mu} + \chi^A$ $h_{00} = 2\phi$ $\chi^0 = \chi^0$ $h_{0i} = 0$ $\chi^i = \partial_i \pi = \pi_{,i}$ $h_{ij} = 2\psi\delta_{ij}$ $\chi^i = \lambda_i \pi = \pi_{,i}$

Hence the metric takes the form:

$$ds^{2} = (1 + 2\phi) dt^{2} - (1 - 2\psi) \delta_{ik} dx^{i} dx^{k}$$

In General Relativity, in the presence of a static spherically symmetric source M_0

うつん 川 エー・エー・ エー・シック

Motivation	$\Lambda_3 / dRGT$ theories	Flat Reference Metric	Curved Reference Metric	Conclusions
000	000000	0000000	00000	0

GRAVITATIONAL FIELD FROM A MASSIVE SOURCE

In Fierz-Pauli massive gravity

$$\mathcal{L}_{FP} = \bar{h}^2 - \bar{h}_B^A \bar{h}_A^B$$

the linearized constraints and equations of motion are:

$$\begin{aligned} \Delta \psi &= \frac{m_g^2}{2} (3\psi + \Delta \pi) + \frac{T^{00}}{2} \qquad \Delta \left(\psi - \phi - m_g^2 \pi \right) = 0, \\ \Delta \chi^0 &= 0 \qquad \qquad \Delta \left(2\psi - \phi \right) = 0 \end{aligned}$$

This implies:

$$\psi = \phi/2 \qquad \Rightarrow \qquad \phi = -\frac{4}{3} \frac{M_0}{r} e^{-m_g r}$$

even when $m_g \rightarrow 0 \Rightarrow \text{vDVZ}$ discontinuity!

(idea of the picture: Creminelli 2011)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Motivation	Λ_3 / dRGT theories	Flat Reference Metric	Curved Reference Metric	Conclusions
000	000000	0000000	00000	0

VAINSHTEIN SCALE OF THE NONLINEAR EXPANSION

Beyond linear order in matter perturbations the equations are modified:

$$2\psi - \phi + O(1) \partial^4 \pi^2 = 0$$

$$\psi - \phi - m_g^2 \pi = 0$$

where $\pi_{,ik}, \Delta \pi \to \partial^2 \pi \ll 1$. In the spherically symmetric case $\partial^n \sim r^{-n}$

$$\Rightarrow \psi + m_g^2 \pi + O(1) r^{-4} \pi^2 \simeq 0$$

At the Vainshtein scale all the terms become comparable:

$$\psi \sim m_g^2 \pi \sim O\left(1\right) r^{-4} \pi^2$$

For $\psi \sim -M_0/r$ this gives the well known result for the Vainshtein scale (1972)

$$R_V \simeq \left(\frac{M_0}{M_P^2 m_g^4}\right)^{1/5}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Smooth limit to General Relativity

$$\begin{split} r \gg R_V \\ \psi + m_g^2 \pi + \underline{O(1)} r^{-4} \pi^2 \simeq 0 \\ \psi - \phi &= -\psi \left[1 - O(1) \left(\frac{R_V}{r} \right)^5 \right] \\ \left(\Delta - m_g^2 \right) \phi &= \frac{4}{3} \left(\frac{T^{00}}{2} \right) \end{split}$$

ABOVE THE VAINSHTEIN SCALE

BELOW THE VAINSHTEIN SCALE

 $r \ll R_V$ $\psi + p g \pi + O(1) r^{-4} \pi^2 \simeq 0$ $\psi - \phi = O(1) \psi \left(\frac{r}{R_V}\right)^{5/2}$ $\Delta \phi = \frac{T^{00}}{2}$

GR restored up to corrections $\frac{\delta\phi}{\phi} \sim \left(\frac{r}{R_V}\right)^{5/2}$

Question remains:

Does a single everywhere non-singular solution matching both asymptotics exist? YES!

Babichev, Deffayet, Ziour (2010)

うつん 川 エー・エー・ エー・シック

Motivation	Λ_3 / dRGT theories	Flat Reference Metric	Curved Reference Metric	Conclusions
000	0000000	0000000	00000	0

STRONG COUPLING

In terms of the canonically normalized fields $\hat{\phi}$, $\hat{\psi}$ the dominant terms in the cubic action for the field $\hat{\pi}$ become

$$S_{\hat{\pi}} \supset \int d^4x \left\{ \Delta \hat{\pi} (2\hat{\psi} - \hat{\phi}) + \frac{1}{2} \frac{1}{M_P m_g^4} \left(\Delta \hat{\pi} \hat{\pi}_{,ik} \hat{\pi}_{,ik} - \hat{\pi}_{,ik} \hat{\pi}_{,kj} \hat{\pi}_{,ji} \right) + \dots \right\}$$

 \Rightarrow The theory becomes strongly coupled above the scale $\Lambda_5 = (M_P m_q^4)^{1/5}!$

Arkani-Hamed, Georgi, Schwartz (2003)

うつん 川 エー・エー・ エー・シック

 \Rightarrow The full quantum theory is needed to describe physics around spherically symmetric sources below the radius

$$r_* = \left(\frac{M_0}{M_P}\right)^{1/3} \frac{1}{\Lambda_5} \gg R_V = \left(\frac{M_0}{M_P}\right)^{1/5} \frac{1}{\Lambda_5}$$

No region of applicability of the Vainshtein mechanism?!

Way out: Raise the energy cutoff by adding appropriate counterterms which eliminate the self-coupling. In this way the Vainshtein radius can be lowered order by order!

Motivation	Λ_3 / dRGT theories	Flat Reference Metric	Curved Reference Metric	Conclusions
000	0000000	0000000	00000	0

Λ_3 THEORIES

For a Langrangian with the highest self coupling $\mathcal{L} \supset (\partial^2 \pi)^n$, the corresponding Vainshtein radius is

$$R_V = \left(\frac{M_0}{M_P^2 m_g^{\frac{2(n-1)}{n-2}}}\right)^{\frac{n-2}{3n-4}}, \quad \Lambda_{(n)} = \left(M_P m_g^{\frac{2(n-1)}{n-2}}\right)^{\frac{n-2}{3n-4}}$$

and the corrections to the gravitational potential within $r \ll R_V$ radius are

$$\frac{\delta\phi}{\phi} \sim \left(\frac{r}{R_V}\right)^{\frac{3n-4}{n-1}}$$

LA, Chamseddine, Mukhanov (2010)

The minimal possible scale at
$$n \to \infty$$
: $R_V^{\infty} = \frac{1}{\Lambda_3} \left(\frac{M_0}{M_P}\right)^{1/3}$, $\Lambda_3 = (M_P m_g^2)^{1/3}$

 $\Rightarrow \Lambda_3$ is reached after the resummation! Strong coupling scale in Λ_3 theories: $r_* = \frac{1}{\Lambda_3} \ll R_V$ \Rightarrow Vainshtein mechanism works! ▲ロト ▲園ト ▲目ト ▲目ト 三目 → のへの

DRGT RESUMMATION OF MASSIVE GRAVITY de Rham, Gabadadze, Tolley (2010)

Massive gravity can be resummed into infinite series

$$\mathcal{K}^{\mu}_{\nu} = \left(\sqrt{g^{-1}f}\right)^{\mu}_{\nu} - \delta^{\mu}_{\nu}$$

where $f_{\mu\nu}$ is the flat reference metric:

$$f_{\mu\nu} = \partial_{\mu}\phi^{A}\partial_{\nu}\phi^{B}\eta_{AB}$$

and the square root matrix is defined as:

$$\left(\sqrt{g^{-1}f}\right)^{\mu}_{\lambda}\left(\sqrt{g^{-1}f}\right)^{\lambda}_{\nu} = g^{\mu\lambda}f_{\lambda\nu}$$

The resulting non-linear action is

$$S_{\mathrm{dRGT}} = -\frac{1}{2} \int d^4x \sqrt{-g} R + m^2 \int d^4x \sqrt{-g} \left[\mathbf{e}_2(\mathcal{K}) + \alpha_3 \mathbf{e}_3(\mathcal{K}) + \alpha_4 \mathbf{e}_4(\mathcal{K}) \right]$$

a finite sum of the characteristic polynomials

$$\begin{aligned} \mathbf{e}_{2}(\mathcal{K}) &= \frac{1}{2} \left(\left[\mathcal{K} \right]^{2} - \left[\mathcal{K}^{2} \right] \right) \\ \mathbf{e}_{3}(\mathcal{K}) &= \frac{1}{6} \left(\left[\mathcal{K} \right]^{3} - 3\left[\mathcal{K} \right] \left[\mathcal{K}^{2} \right] + 2\left[\mathcal{K}^{3} \right] \right) \\ \mathbf{e}_{4}(\mathcal{K}) &= \frac{1}{24} \left(\left[\mathcal{K} \right]^{4} - 6\left[\mathcal{K} \right]^{2} \left[\mathcal{K}^{2} \right] + 3\left[\mathcal{K}^{2} \right]^{2} + 8\left[\mathcal{K} \right] \left[\mathcal{K}^{3} \right] - 6\left[\mathcal{K}^{4} \right] \right) \end{aligned}$$

Motivation 000	Λ_3 / dRGT theories 0000000	Flat Reference Metric	Curved Reference Metric	Conclusions 0
Outline				

1. Vainshtein Mechanism and Strong Coupling $\rightarrow \Lambda_3$ theories

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

2. Cosmological Solutions with Flat Reference Metric

3. Massive Gravity with Curved Reference Metric

Motivation 000	$\Lambda_3~/~{ m dRGT}$ theories 0000000	Flat Reference Metric •0000000	Curved Reference Metric	Conclusions 0	
REWRITING THE ACTION					

Hassan, Rosen (2011)

The action can be rewritten in a slightly simpler form by noticing

$$\det \left(\mathbb{I} + \mathcal{K}\right) = \sum_{n=0}^{4} \quad \mathsf{e}_n(\lambda_1, \dots, \lambda_4) = \sum_{n=0}^{4} \quad \mathsf{e}_n(\mathcal{K}),$$

where λ_i are the eigenvalues of the matrix \mathcal{K} .

 \Rightarrow The action has a structure of a deformed determinant.

Due to the definition: $\mathcal{K} = \sqrt{g^{-1}f} - \mathbb{I}$ the action can be rewritten

$$S = -\frac{1}{2} \int d^4x \sqrt{-g} \left[R - 2m^2 \sum_{n=0}^3 \beta_n \mathbf{e}_n \left(\sqrt{g^{-1}f}\right) \right] + m^2 \int d^4x \underbrace{\sqrt{-g} \beta_4 \mathbf{e}_4 \left(\sqrt{g^{-1}f}\right)}_{=\beta_4 \sqrt{-\det f}}$$

The new coefficients can be expressed through the old coefficients $\beta_n = \beta_n(\alpha_i)$. In particular $\beta_0 = 6 - 4\alpha_3 + \alpha_4 \neq 0$. Cosmological constant term for the reference metric: This can be dropped since the reference metric is non-dynamic

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ ̄豆 _ のへで

Motivation	$\Lambda_3 / dRGT$ theories	Flat Reference Metric	Curved Reference Metric	Conclusions		
000	000000	●0000000	00000	0		
B F/W B L L	'INC' 'I'HH' AC''I'I					

Hassan, Rosen (2011)

The action can be rewritten in a slightly simpler form by noticing

$$\hat{\det} \left(\mathbb{I} + \mathcal{K} \right) = \sum_{n=0}^{4} \alpha_n \mathsf{e}_n(\lambda_1, \dots, \lambda_4) = \sum_{n=0}^{4} \alpha_n \mathsf{e}_n(\mathcal{K}),$$

where λ_i are the eigenvalues of the matrix \mathcal{K} .

 \Rightarrow The action has a structure of a deformed determinant.

Due to the definition: $\mathcal{K} = \sqrt{g^{-1}f} - \mathbb{I}$ the action can be rewritten

$$S = -\frac{1}{2} \int d^4x \sqrt{-g} \left[R - 2m^2 \sum_{n=0}^3 \beta_n \mathbf{e}_n \left(\sqrt{g^{-1}f}\right) \right] + m^2 \int d^4x \underbrace{\sqrt{-g} \beta_4 \mathbf{e}_4 \left(\sqrt{g^{-1}f}\right)}_{=\beta_4 \sqrt{-\det f}}$$

The new coefficients can be expressed through the old coefficients $\beta_n = \beta_n(\alpha_i)$. In particular $\beta_0 = 6 - 4\alpha_3 + \alpha_4 \neq 0$. Cosmological constant term for the reference metric: This can be dropped since the reference metric is non-dynamic

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨー のへで

Motivation 000	$\Lambda_3~/~{ m dRGT}$ theories 0000000	Flat Reference Metric •0000000	Curved Reference Metric	Conclusions 0		
REWRITING THE ACTION						

Hassan, Rosen (2011)

The action can be rewritten in a slightly simpler form by noticing

$$\hat{\det} \left(\mathbb{I} + \mathcal{K} \right) = \sum_{n=0}^{4} \alpha_n \mathsf{e}_n(\lambda_1, \dots, \lambda_4) = \sum_{n=0}^{4} \alpha_n \mathsf{e}_n(\mathcal{K}),$$

where λ_i are the eigenvalues of the matrix \mathcal{K} .

 \Rightarrow The action has a structure of a deformed determinant.

Due to the definition: $\mathcal{K} = \sqrt{g^{-1}f} - \mathbb{I}$ the action can be rewritten

$$S = -\frac{1}{2} \int d^4x \sqrt{-g} \left[R - 2m^2 \sum_{n=0}^3 \beta_n \mathbf{e}_n \left(\sqrt{g^{-1}f}\right) \right] + m^2 \int d^4x \underbrace{\sqrt{-g} \beta_4 \mathbf{e}_4 \left(\sqrt{g^{-1}f}\right)}_{=\beta_4 \sqrt{-\det f}}$$

The new coefficients can be expressed through the old coefficients $\beta_n = \beta_n(\alpha_i)$. In particular $\beta_0 = 6 - 4\alpha_3 + \alpha_4 \neq 0$. Cosmological constant term for the reference metric: This can be dropped since the reference metric is non-dynamic

▲□▶ ▲□▶ ★ □▶ ★ □▶ ▲ □ ● ● ●

Motivation	Λ_3 / dRGT theories	Flat Reference Metric	Curved Reference Metric	Conclusions
000	000000	0000000	00000	0

Special Choice of Coefficients

There is a special choice of coefficients

$$\alpha_3 = \frac{2-C}{1-C}; \qquad \alpha_4 = \frac{3-3C+C^2}{(1-C)^2}$$

for which

- Schwarzschield-de Sitter solutions
- static black hole solutions
- de Sitter and FRW solutions
- bigravity equations of motion decouple
- the mass term takes the very simple form

(no one noticed)

$$S_{\text{mass}} = m^2 \int d^4x \sqrt{-g} \left[(1-C) + \frac{1}{C(1-C)^2} \det \left(\sqrt{g^{-1}f} - C\mathbb{I} \right) \right]$$

Nieuwenhuizen (2011)

Gruzinov, Mirbabayi (2011)

Nieuwenhuizen; Chamseddine, Volkov (2011)

Volkov (2011)

Motivation	Λ_3 / dRGT theories	Flat Reference Metric	Curved Reference Metric	Conclusions
000	0000000	0000000	00000	0

Square Root of the Isotropic Ansatz

We consider the isotropic metric

$$ds^{2} = N^{2}(t, r)dt^{2} - a^{2}(t, r)\left(dr^{2} + r^{2}d\Omega^{2}\right)$$

and take the most general spherically symmetric scalar field configuration

$$\begin{split} \phi^0 &= f(r, t), \\ \phi^i &= g(r, t) n^i, \qquad n^i \equiv (\sin \theta \, \cos \phi, \, \sin \theta \, \sin \phi, \, \cos \theta) \end{split}$$

D'Amico et al. (2011)

where ϕ^A are the Stückelberg scalars of the reference metric $f_{\mu\nu} = \partial_{\mu}\phi^A \partial_{\nu}\phi^B \eta_{AB}$

What is a square root of a matrix? For a diagonalizable $n \times n$ matrix Ait holds that $A^k = PD^kP^{-1}$ where P is the matrix of eigenvectors and $D = \text{diag}(\lambda_1, \dots, \lambda_n)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ● ◆○◆

Motivation	Λ_3 / dRGT theories	Flat Reference Metric	Curved Reference Metric	Conclusions
000	0000000	0000000	00000	0

Square Root of the Isotropic Ansatz

We consider the isotropic metric

$$ds^{2} = N^{2}(t, r)dt^{2} - a^{2}(t, r)\left(dr^{2} + r^{2}d\Omega^{2}\right)$$

and take the most general spherically symmetric scalar field configuration

$$\begin{split} \phi^0 &= f(r,\,t), \\ \phi^i &= g(r,\,t) n^i, \qquad n^i \equiv (\sin\theta\,\cos\phi,\,\sin\theta\,\sin\phi,\,\cos\theta) \end{split}$$

D'Amico et al. (2011)

where ϕ^A are the Stückelberg scalars of the reference metric $f_{\mu\nu} = \partial_{\mu}\phi^A \partial_{\nu}\phi^B \eta_{AB}$

What is a square root of a matrix? For a diagonalizable $n \times n$ matrix Ait holds that $A^k = PD^kP^{-1}$ where P is the matrix of eigenvectors and $D = \text{diag}(\lambda_1, \dots, \lambda_n)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivation	$\Lambda_3 / dRGT$ theories	Flat Reference Metric	Curved Reference Metric	Conclusions
000	000000	0000000	00000	0

SQUARE ROOT FOR THE ISOTROPIC ANSATZ

In this case the square root can be taken explicitly:

$$\left(\sqrt{g^{-1}f}\right)_{\nu}^{\mu} = \begin{pmatrix} \frac{1}{\sqrt{X}} \left[\frac{\dot{f}^2 - \dot{g}^2}{N^2} + \sqrt{\lambda_1 \lambda_2}\right] & -\frac{1}{\sqrt{X}} \frac{1}{N^2} \left(\dot{g}g' - \dot{f}f'\right) & 0 & 0\\ \frac{1}{\sqrt{X}} \frac{1}{a^2} \left(\dot{g}g' - \dot{f}f'\right) & \frac{1}{\sqrt{X}} \left[\frac{-f'^2 + g'^2}{a^2} + \sqrt{\lambda_1 \lambda_2}\right] & 0 & 0\\ 0 & 0 & g/ar & 0\\ 0 & 0 & 0 & g/ar \end{pmatrix}$$

where

$$X = \left(\frac{\dot{f}}{N} + \mu \frac{g'}{a}\right)^2 - \left(\frac{\dot{g}}{N} + \mu \frac{f'}{a}\right)^2 \quad \text{with} \quad \mu = \operatorname{sgn}(g'\dot{f} - f'\dot{g})$$

and $\lambda_{1,2}$ denote the eigenvalues of the upper 2 × 2 matrix and can be expressed as

$$\sqrt{\lambda_1} = \frac{1}{2} \left(\sqrt{X_+} + \sqrt{X_-} \right)$$
$$\sqrt{\lambda_2} = \frac{1}{2} \mu \left(\sqrt{X_+} - \sqrt{X_-} \right), \qquad X_{\pm} \equiv X_{\mu=\pm 1}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

000 0000000 0000000 00000 0	

EQUATIONS OF MOTION

Varying the action with respect to the Stückelberg fields f and g yields the equations of motion

of the field f

$$\begin{split} &\partial_t \left[a^2 r^2 \left(\frac{g}{ar} - C \right)^2 \left\{ \frac{1}{\sqrt{X}} (C - \sqrt{X}) \mu g' + \frac{C}{\sqrt{X}} \frac{a\dot{f}}{N} \right\} \right] - \\ &- \partial_r \left[aN r^2 \left(\frac{g}{ar} - C \right)^2 \left\{ \frac{1}{\sqrt{X}} (C - \sqrt{X}) \mu \frac{a\dot{g}}{N} + \frac{C}{\sqrt{X}} f' \right\} \right] = 0, \end{split}$$

and of the field g

$$\begin{split} &\partial_t \left[a^2 r^2 \left(\frac{g}{ar} - C \right)^2 \left\{ \frac{1}{\sqrt{X}} (C - \sqrt{X}) \mu f' + \frac{C}{\sqrt{X}} \frac{a\dot{g}}{N} \right\} \right] - \\ &- \partial_r \left[aNr^2 \left(\frac{g}{ar} - C \right)^2 \left\{ \frac{1}{\sqrt{X}} (C - \sqrt{X}) \mu \frac{a\dot{f}}{N} + \frac{C}{\sqrt{X}} g' \right\} \right] - \\ &- 2a^2 Nr \left[C(C - \sqrt{X}) + \frac{\mu}{aN} \left(g'\dot{f} - f'\dot{g} \right) \right] = 0 \end{split}$$

The equation of motion for the field f is satisfied if g = Car.

The equation of g gives an equation for f which is especially simple on the solution. However an explicit solution is not required for computing the $T_{\mu\nu}^{(\phi)}$.

000 000000 0000000 0000 0	

EQUATIONS OF MOTION

Varying the action with respect to the Stückelberg fields f and g yields the equations of motion

of the field f

$$\begin{split} &\partial_t \left[a^2 r^2 \left(\frac{g}{ar} - C \right)^2 \left\{ \frac{1}{\sqrt{X}} (C - \sqrt{X}) \mu g' + \frac{C}{\sqrt{X}} \frac{a\dot{f}}{N} \right\} \right] - \\ &- \partial_r \left[aN r^2 \left(\frac{g}{ar} - C \right)^2 \left\{ \frac{1}{\sqrt{X}} (C - \sqrt{X}) \mu \frac{a\dot{g}}{N} + \frac{C}{\sqrt{X}} f' \right\} \right] = 0, \end{split}$$

and of the field g

$$\begin{split} &\partial_t \left[a^2 r^2 \left(\frac{g}{ar} - C \right)^2 \left\{ \frac{1}{\sqrt{X}} (C - \sqrt{X}) \mu f' + \frac{C}{\sqrt{X}} \frac{a\dot{g}}{N} \right\} \right] - \\ &- \partial_r \left[aNr^2 \left(\frac{g}{ar} - C \right)^2 \left\{ \frac{1}{\sqrt{X}} (C - \sqrt{X}) \mu \frac{a\dot{f}}{N} + \frac{C}{\sqrt{X}} g' \right\} \right] - \\ &- 2a^2 Nr \left[C(C - \sqrt{X}) + \frac{\mu}{aN} \left(g'\dot{f} - f'\dot{g} \right) \right] = 0 \end{split}$$

The equation of motion for the field f is satisfied if g = Car. The equation of g gives an equation for f which is especially simple on the solution. However an explicit solution is not required for computing the $T_{\mu\nu}^{(\phi)}$.

Motivation	$\Lambda_3 / dRGT$ theories	Flat Reference Metric	Curved Reference Metric	Conclusions
000	000000	00000000	00000	0

ENERGY-MOMENTUM TENSOR

Variation of the action with respect to the metric leads to the modified

$$G_{\mu\nu} = T^{(\phi)}_{\mu\nu} + T^{(m)}_{\mu\nu}, \qquad 8\pi G_N \equiv 1$$

where $G_{\mu\nu}$ is the Einstein tensor, $T^{(\phi)}_{\mu\nu}$ is the effective stress tensor due to the mass term, and $T^{(m)}_{\mu\nu}$ is the *usual* matter tensor.

For any isotropic distribution of the matter the effective energy-momentum tensor on the solution g = Car takes the form of a cosmological constant independently on the solution of the field f!

$$\begin{split} T_{tt}^{(\phi)} &= -m^2 N^2 (1-C) \\ T_{rr}^{(\phi)} &= m^2 a^2 (1-C) \\ T_{\theta\theta}^{(\phi)} &= \frac{T_{\phi\phi}^{(\phi)}}{\sin^2 \theta} = m^2 a^2 r^2 (1-C) \end{split}$$

for $C = \frac{3}{2}$ see D'Amico et al. (2011); for arbitrary α_3 , α_4 see Gratia, Hu, Wyman (2012)

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ●

Motivation	Λ_3 / dRGT theories	Flat Reference Metric	Curved Reference Metric	Conclusions
000	000000	00000000	00000	0

VANISHING OF KINETIC TERMS

By careful inspection of the square root matrix in the case of isotropic ansatz

$$\left(\sqrt{g^{-1}f}\right)_{\nu}^{\mu} = \begin{pmatrix} a_{11}(\dot{f}, \dot{g}, \dots) & a_{12}(\dot{f}, \dot{g}, \dots) & 0 & 0 \\ a_{21}(\dot{f}, \dot{g}, \dots) & a_{22}(\dot{f}, \dot{g}, \dots) & 0 & 0 \\ 0 & 0 & g/ar & 0 \\ 0 & 0 & 0 & g/ar \end{pmatrix}$$

we see that all the time derivatives of the Stückelberg fields f and g enter only in the upper-left 2×2 matrix!

It is useful to split the action for the spherically symmetric scalar fields

$$S_{\text{mass}} = m^2 \int d^4 x \sqrt{-g} \left[(1-C) + \frac{1}{C(1-C)^2} \underbrace{\det\left(\sqrt{g^{-1}f} - C\mathbb{I}\right)}_{=\left(\frac{g}{ar} - C\right)^2 \det A} \right]$$

- ロ ト - 4 回 ト - 4 □

where $A \equiv \left(\sqrt{g^{-1}f} - C\mathbb{I}\right)_{2 \times 2}$ contains all the time derivatives!

Motivation	Λ_3 / dRGT theories	Flat Reference Metric	Curved Reference Metric	Conclusions
000	000000	0000000	00000	0

VANISHING OF KINETIC TERMS

The isotropic ansatz allows also for arbitrary isotropic scalar field perturbations

$$f(t, r) = f_0(t, r) + \delta f(t, r), \quad g(t, r) = g_0(t, r) + \delta g(t, r)$$

and spherically symmetric perturbations for example around the Friedmann solution

$$N^{2}(t, r) = 1 + 2\phi(t, r)$$
$$a^{2}(t, r) = a^{2}(t) \left[1 - 2\psi(t, r)\right]$$

Gratia, Hu, Wyman (2012)

うつん 川 エー・エー・ エー・シック

We see however that on the scalar field solution $g_0 = Car$ the action for the perturbations δg , δf becomes schematically

$$S_{\rm mass} = m^2 \int d^4x \, \sqrt{-g} \left[(1-C) + \frac{1}{C(1-C)^2} \left(\frac{\delta g}{ar} \right)^2 \det A \left(\dot{f}_0 + \delta \dot{f}, \dot{g}_0 + \delta \dot{g}, \dots \right) \right]$$

 \Rightarrow The isotropic scalar field perturbations have vanishing kinetic terms!

for more details: Koyama et al. (2011); Mukohyama et al. (2012)

Motivation 000	$\Lambda_3~/~{ m dRGT}~{ m theories}$ 0000000	Flat Reference Metric 00000000	Curved Reference Metric	Conclusions 0
Outline	ъ			

1. Vainshtein Mechanism and Strong Coupling $\to \Lambda_3$ theories

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

2. Cosmological Solutions with Flat Reference Metric

3. Massive Gravity with Curved Reference Metric

 Λ_3 / dRGT theories Flat Reference Metric Curved Reference Metric 00000

"MASSIVE SPIN-2 PARTICLE" ON CURVED BACKGROUND

What is it?

"Spin family", Julian Voss-Andreae (2009)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ = のへぐ

Motivation	Λ_3 / dRGT theories	Flat Reference Metric	Curved Reference Metric	Conclusions
000	000000	0000000	0000	0

"Massive spin-2 particle" on curved background

• In Lorentz invariant spacetime there is a rigid definition of the mass of the particle:

$$m^2 \equiv -\eta_{\mu\nu} p^\mu p^\nu = E^2 - \vec{p}^2$$

 \Rightarrow Under the little group transformations a particle with spin *j* belongs to a representation of dimension 2j + 1.

 \Rightarrow Spin-2 particle has 5 degrees of freedom.

• On the other hand consider a free scalar field obeying $(\Box + m^2)\phi = 0$. Expanded in the Fourier series $\sum_k \phi_k e^{ikx}$ its modes satisfy the dispersion relation $-\omega^2 + \vec{k}^2 + m^2 = 0$.

 \Rightarrow "Alternative" definition of mass!

- Combine the two! ⇒ Define a massive spin-2 particle on curved background such that
 - it has 5 degrees of freedom and
 - they all obey the same equation of motion (□_g + m²)φ = 0 and thus have equal dispersion relations

うつん 川 エー・エー・ エー・シック

NON-MINKOWSKI SOLUTIONS OF DRGT

We have seen that the Stückelberg scalars ϕ^A have their own effective EMT

$$T^{(\phi)}_{\mu\nu} \equiv \frac{2}{\sqrt{-g}} \frac{\delta S_{\text{mass}}}{\delta g^{\mu\nu}} = -\frac{m^2}{2} g_{\mu\nu} \left([\mathcal{K}]^2 - [\mathcal{K}^2] \right) + \frac{m^2}{2} \mathcal{K}^{\alpha}_{\beta} \frac{\delta \mathcal{K}^{\lambda}_{\rho}}{\delta g^{\mu\nu}} \left[\delta^{\beta}_{\alpha} \delta^{\rho}_{\lambda} - \delta^{\rho}_{\alpha} \delta^{\beta}_{\lambda} \right].$$

 \Rightarrow a whole zoo of different non-trivial solutions

$$\left\{ \widetilde{g}_{\mu\nu} \neq \eta_{\mu\nu}, \, \widetilde{\phi}^A \right\}!$$

How do the metric excitations around these solutions behave? Split the field \mathcal{K}^{μ}_{ν} as $\mathcal{K}^{\mu}_{\nu} = \widetilde{\mathcal{K}}^{\mu}_{\nu} + \delta \mathcal{K}^{\mu}_{\nu}$ with

$$\widetilde{\mathcal{K}}^{\,\mu}_{\,\nu} = \delta^{\mu}_{\nu} - \sqrt{\widetilde{g}^{\,\mu\lambda}\partial_{\lambda}\widetilde{\phi}^{A}\partial_{\nu}\widetilde{\phi}^{B}\eta_{AB}}$$

and observe that if $\overset{\sim}{\mathcal{K}}^{\mu}_{\nu} \neq 0 \Rightarrow$ the Fierz-Pauli structure is lost!

Demand that

$$\widetilde{\mathcal{K}}^{\,\mu}_{\,\nu} = 0 \quad \Leftrightarrow \quad \widetilde{g}^{\,\mu\nu}(x) \frac{\partial \widetilde{\phi}^A}{\partial x^{\mu}} \frac{\partial \widetilde{\phi}^B}{\partial x^{\nu}} = \eta^{AB}$$

This is a coordinate transformation: curved \rightarrow flat

Motivation 000	Λ_3 / dRGT theories 0000000	Flat Reference Metric 00000000	Curved Reference Metric	Conclusions O	
GENERALIZATION OF THE STÜCKELBERG TRICK LA (2011)					

Replace the Minkowski metric by a set of scalar functions as

 $\eta^{AB} \to \bar{f}^{AB}(\phi)$

Then define

$$\bar{h}^{AB} \equiv g^{\mu\nu}(x)\partial_{\mu}\phi^{A}\partial_{\nu}\phi^{B} - \bar{f}^{AB}(\phi)$$

with

$$\bar{f}^{AB}(\phi) \equiv \tilde{g}^{\mu\nu}(\phi) \delta^A_{\mu} \delta^B_{\nu}.$$

$$\Rightarrow$$
 the old story: $\mathcal{L}_{FP} = \bar{h}^2 - \bar{h}_B^A \bar{h}_A^B$!

• The scalar field "distances" are now measured by the "metric" \bar{f}^{AB} , and the indices in the scalar field space have to be raised and lowered as

$$\phi_B \equiv \bar{f}_{AB} \phi^A$$

- Lagrangian is invariant under the isometries of the metric \bar{f}^{AB} !
- The nonlinear dRGT completion can be written in terms of

$$\mathcal{K}^{\mu}_{\nu} = \delta^{\mu}_{\nu} - \underbrace{\sqrt{g^{\mu\lambda}\partial_{\lambda}\phi^{A}\partial_{\nu}\phi^{B}\bar{f}_{AB}(\phi)}}_{=\sqrt{g^{\mu\lambda}f_{\lambda\nu}}}.$$

うつん 川 エー・エー・ エー・シック

EXAMPLE: MASSIVE GRAVITON ON DE SITTER SPACETIME

Consider spatially flat de Sitter metric $\tilde{g}^{\mu\nu} = a^{-2}(\eta)\eta^{\mu\nu}$ with $a(\eta) = -1/(H\eta)$.

 \Rightarrow The scalar field metric has to be chosen as $\bar{f}^{AB}(\phi^0)=(H\phi^0)^2\eta^{AB}$

 \Rightarrow The FP mass term

$$\mathcal{L}_{FP} = g^{\mu\nu} g^{\alpha\beta} \partial_{\mu} \phi^A \partial_{\nu} \phi^B \partial_{\alpha} \phi^C \partial_{\beta} \phi^D \left[\eta_{AB} \eta_{CD} - \eta_{BC} \eta_{AD} \right] - 6(H\phi^0)^2 g^{\mu\nu} \partial_{\mu} \phi^A \partial_{\nu} \phi^B \eta_{AB} + 12(H\phi^0)^4$$

- diffeomorphism invariant
- NOT invariant under the shifts $\phi^A \to \phi^A + \lambda^A$
- invariant under $\phi^A \to \hat{\Lambda}^A_B \phi^B$ such that $\hat{\Lambda}^A_C \hat{\Lambda}^B_D \bar{f}_{AB}(\phi) \to \bar{f}_{CD}(\phi)$
- gives 5 degrees of freedom q_i for massive graviton each of which satisfy

$$(\Box_{dS} + m^2)q_i = 0 \quad \Leftrightarrow \quad (\partial_\eta^2 + 2\mathcal{H}\partial_\eta + m^2)q_i = 0$$

In terms of physical time $dt = a(\eta)d\eta$:

$$\ddot{q_i} - \frac{\Delta}{a^2}q_i + m_{eff}^2q_i = 0, \qquad m_{eff}^2 = m^2 - \frac{9}{4}H^2$$

Deser and Waldron (2001)

Motivation	$\Lambda_3 / dRGT$ theories	Flat Reference Metric	Curved Reference Metric	Conclusions
000	000000	0000000	00000	•

CONCLUSIONS

- Λ_3 / dRGT theories are non-linear massive gravity theories with working Vainshtein mechanism and with the highest achievable strong coupling scale
- General relativity can be restored around static spherically symmetric massive sources up to corrections to the Newtons potential $\delta\phi/\phi \sim (r/R_V)^3$
- In dRGT massive gravity with flat reference metric and an external isotropic matter distribution, the effective energy-momentum tensor due to the mass term takes the form of a cosmological constant
- The isotropic perturbations of the scalar fields have vanishing quadratic kinetic terms and signal towards strong coupling
- A diffeomorphism invariant Fierz-Pauli mass term can be constructed on arbitrary background by the use of four scalar fields
- BUT: on each background the generally covariant theory is a fundamentally different theory with different symmetries
- No single unified theory of massive gravity exists such that the graviton always behaves as a massive spin-2 particle around any background metric

Thank you for your attention!

- ロ ト - 4 回 ト - 4 □

Motivation 000	$\Lambda_3~/~{ m dRGT}~{ m theories}$ 0000000	Flat Reference Metric 00000000	Curved Reference Metric	Conclusions •

CONCLUSIONS

- Λ_3 / dRGT theories are non-linear massive gravity theories with working Vainshtein mechanism and with the highest achievable strong coupling scale
- General relativity can be restored around static spherically symmetric massive sources up to corrections to the Newtons potential $\delta \phi / \phi \sim (r/R_V)^3$
- In dRGT massive gravity with flat reference metric and an external isotropic matter distribution, the effective energy-momentum tensor due to the mass term takes the form of a cosmological constant
- The isotropic perturbations of the scalar fields have vanishing quadratic kinetic terms and signal towards strong coupling
- A diffeomorphism invariant Fierz-Pauli mass term can be constructed on arbitrary background by the use of four scalar fields
- BUT: on each background the generally covariant theory is a fundamentally different theory with different symmetries
- No single unified theory of massive gravity exists such that the graviton always behaves as a massive spin-2 particle around any background metric

Thank you for your attention!

- ロ ト - 4 回 ト - 4 □

Motivation 000	$\Lambda_3~/~{ m dRGT}$ theories 0000000	Flat Reference Metric 00000000	Curved Reference Metric	Conclusions •

CONCLUSIONS

- Λ_3 / dRGT theories are non-linear massive gravity theories with working Vainshtein mechanism and with the highest achievable strong coupling scale
- General relativity can be restored around static spherically symmetric massive sources up to corrections to the Newtons potential $\delta \phi / \phi \sim (r/R_V)^3$
- In dRGT massive gravity with flat reference metric and an external isotropic matter distribution, the effective energy-momentum tensor due to the mass term takes the form of a cosmological constant
- The isotropic perturbations of the scalar fields have vanishing quadratic kinetic terms and signal towards strong coupling
- A diffeomorphism invariant Fierz-Pauli mass term can be constructed on arbitrary background by the use of four scalar fields
- BUT: on each background the generally covariant theory is a fundamentally different theory with different symmetries
- No single unified theory of massive gravity exists such that the graviton always behaves as a massive spin-2 particle around any background metric

Thank you for your attention!

- ロ ト - 4 回 ト - 4 □