Reconstruction of the null-test for the matter density perturbations

Savvas Nesseris

University of Geneva

SN, Domenico Sapone, Juan García-Bellido
arXiv: 1409.3697, 1410.0338

Main points of the talk

- Introduction
- What is a null test?
- The null test for the growth-rate data
- The data
- Results:
i) Binning
ii) Modeling
- Conclusions

The Standard Cosmological model

Einstein equations: $\quad R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\Lambda g_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}$

$$
G_{\mu \nu} \quad \text { Cosmological Constant } \quad T_{\nu}^{\mu}=P g_{\nu}^{\mu}+(\rho+P) U^{\mu} U_{\nu}
$$

Robertson-Walker metric: $\quad d s^{2}=c^{2} d t^{2}-\alpha(t)^{2}\left(\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin (\theta)^{2} d \phi^{2}\right)\right)$

Friedmann equations: $\quad H^{2}(\alpha)=\left(\frac{\dot{\alpha}}{\alpha}\right)^{2}=\frac{8 \pi G}{3} \rho(\alpha)-\frac{k}{\alpha^{2}}$

$$
\frac{\ddot{\alpha}}{\alpha}=-\frac{4 \pi G}{3}(\rho(\alpha)+P(\alpha))
$$

$$
k=-1
$$

Continuity:

$$
\nabla_{\nu} T^{\mu \nu}=0 \Longleftrightarrow \dot{\rho}+3 H(\rho+P)=0
$$

(from Bianchi identities)

The Standard Cosmological model

Hubble (1929): Universe is expanding

Riess et al. (1998): ... and actually is accelerating from supermove type ta
$2^{\text {nd }}$ Friedmann equation: $\frac{\ddot{\alpha}}{\alpha}=-\frac{4 \pi G}{3}(\rho(\alpha)+3 P(\alpha)) \quad \Longrightarrow P<-\frac{\rho}{3}$

Equation of state

$$
P=w \rho-\left[\begin{array}{lll}
w=0 & \text { Non-relativistic matter } & P \ll \rho \\
w=\frac{1}{3} & \text { Radiation } & P=\frac{1}{3} \rho
\end{array}\right.
$$

$$
P<-\frac{\rho}{3}
$$

$$
\square \quad w<-\frac{1}{3}
$$

Known kinds of matter cannot explain the accelerated expansion of the universe!

Cosmological perturbations and structure formation

To understand structure formation, we need to study the metric (scalar) perturbations

And the matter density perturbations:

$$
T_{0}^{0}=-\left(\rho_{m}+\delta \rho_{m}\right),
$$

$$
T_{i}^{0}=-\rho_{m} v_{m, i}
$$

Velocity potential

Join the two:

$$
\delta^{\prime \prime}(a)+\left(\frac{3}{a}+\frac{H^{\prime}(a)}{H(a)}\right) \delta^{\prime}(a)-\frac{3}{2} \frac{\Omega_{m} G_{\mathrm{eff}}(a) / G_{N}}{a^{5} H(a)^{2 / /} / H_{0}^{2}} \delta(a)=0
$$

$$
\delta_{m} \equiv \frac{\delta \rho_{m}}{\rho_{m}}+3 H v
$$

Effective Newton's constant in Modified Gravity. For $G R, G_{\text {eff }} / G_{N}=1$

The usual way to do things...

Test a variety of models, eg

Model 1: Λ CDM (w=-1)

Model 2: $\mathrm{w}(\mathrm{a})=\mathrm{w}_{0}+\mathrm{w}_{1}(1-\mathrm{a})$

Model 3: f(R)

Model n: ???

The usual way to do things...

- Eg, SnIa data are given in terms of the distance modulus:
- DE is described by $\mathrm{w}(\mathrm{z})$
- Theoretical prediction:

$$
D_{L}(z)=(1+z) \int_{0}^{z} d z^{\prime} \frac{H_{0}}{H\left(z^{\prime} ; \Omega_{0 \mathrm{~m}}, w_{0}, w_{1}\right)}
$$ (flat universe)

$$
\begin{gathered}
w(z)=-1+\frac{1}{3}(1+z) \frac{d \ln \left(\delta H(z)^{2}\right)}{d \ln z} \\
\delta H(z)^{2}=H(z)^{2} / H_{0}^{2}-\Omega_{0 \mathrm{~m}}(1+z)^{3}
\end{gathered}
$$

$$
\mu_{0}=42.38-5 \log _{10} h
$$

- Minimize to find the best fit parameters:

$$
\chi_{S n I a}^{2}\left(\Omega_{0 \mathrm{~m}}, w_{0}, w_{1}\right)=\sum_{i=1}^{N} \frac{\left(\mu_{o b s}\left(z_{i}\right)-\mu_{\text {th }}\left(z_{i}\right)\right)^{2}}{\sigma_{\mu i}^{2}}
$$

The usual way to do things...

And the winner is...

Problems:

1) Model bias (interpretation of the results depends on chosen models+assumptions)
2) Limited number of tested models (finite number of theories, impossible to test everything)

Can we find a more general and straightforward way to test the fundamental assumptions of our theories???

What is a null test?

A null test is a consistency relation that has to be true for all z and usually equal to zero or some constant value! Examples:

1) The Ω k test of Clarkson et al:
(arXiv:0712.3457)
$d_{L}(z)=\frac{(1+z)}{H_{0} \sqrt{-\Omega_{k}}} \sin \left(\sqrt{-\Omega_{k}} \int_{0}^{z} \mathrm{~d} z^{\prime} \frac{H_{0}}{H\left(z^{\prime}\right)}\right) \longrightarrow \Omega_{k}=\frac{\left[H(z) D^{\prime}(z)\right]^{2}-1}{\left[H_{0} D(z)\right]^{2}} \quad D=(1+z) d_{A}$
$\mathscr{C}(z)=1+H^{2}\left(D D^{\prime \prime}-D^{\prime 2}\right)+H H^{\prime} D D^{\prime}$

2) The Om statistic of Shafieloo et al:

(arXiv: 0807.3548, 1004.0960)

$$
O m(x) \equiv \frac{h^{2}(x)-1}{x^{3}-1}, \quad x=1+z, \quad h(x)=H(x) / H_{0}
$$

The null test for the growth rate

The answer is yes!!!

$$
\begin{aligned}
\mathcal{O}(z) & =\frac{a^{2} H(a) f(a)}{a_{0}^{2} H\left(a_{0}\right) f\left(a_{0}\right)} e^{\int_{a_{0}}^{a}\left(\frac{f(x)}{x}-\frac{3 \Omega_{m}}{2 x^{4} H(x)^{2} f(x)}\right) d x}=1 . \\
\mathcal{O}(z) & =\frac{a^{2} H(a) f \sigma_{8}(a)}{a_{0}^{2} H\left(a_{0}\right) f \sigma_{8}\left(a_{0}\right)} \times \\
& \times e^{-\frac{3}{2} \Omega_{m} \int_{a_{0}}^{a} \frac{\sigma_{8}(a=1) \frac{\delta\left(a_{0}\right)}{\delta(1)}+\int_{0}^{x} \frac{f \sigma_{8}(y)}{y} d y}{x^{4} H(x)^{2} / H_{0}^{f} f \sigma_{8}(x)} d x}=1 .
\end{aligned}
$$

$$
G_{\mathrm{eff}} / G_{N}=1
$$

SN, Domenico Sapone, Juan García-Bellido arXiv: 1409.3697, 1410.0338

Notes:
i) $\mathbf{O}(\mathrm{z})$ should be 1 at all $z!!!!$
ii) Independent of the DE model used (GR)
iii) Doesn't contain derivatives! (derivatives of noisy data are bad!!!)
iv) Deviations from unity could be: New physics (MoGs, DE perts), deviation from FRLW or tension in the data (H and fo8).

The Lagrangian formalism

Goal: Find a conserved quantity for the growth-rate.

Hint: create a Lagrangian that produces the ODE for growth and check for symmetries

$$
\delta^{\prime \prime}(a)+\left(\frac{3}{a}+\frac{H^{\prime}(a)}{H(a)}\right) \delta^{\prime}(a)-\frac{3}{2} \frac{\Omega_{m} G_{\mathrm{eff}}(a) / G_{N} \delta(a)}{a^{5} H(a)^{2} / H_{0}^{2}}=0
$$

Start with:

Euler-Lagrange equations: $\quad \frac{\partial \mathcal{L}}{\partial \delta}-\frac{d}{d a} \frac{\partial \mathcal{L}}{\partial \delta^{\prime}}=0$

The Lagrangian formalism

Ansatz: $\mathcal{L}=T-V \longrightarrow T=\frac{1}{2} f_{1}(a, H(a)) \delta^{\prime}(a)^{2} \quad$ "kinetic term"

Use E-L eqs: $\quad \delta^{\prime \prime}(a)+\left(\frac{\partial_{a} f_{1}(a, H)}{f_{1}(a, H)}+\frac{H^{\prime}(a) \partial_{H} f_{1}(a, H)}{f_{1}(a, H)}\right) \delta^{\prime}(a)+\frac{f_{2}(a, H)}{f_{1}(a, H)} \delta(a)=0$

Compare to ODE:

$$
\delta^{\prime \prime}(a)+\left(\frac{3}{a}+\frac{H^{\prime}(a)}{H(a)}\right) \delta^{\prime}(a)-\frac{3 \Omega_{m} G_{\mathrm{eff}}(a) / G_{N} \delta(a)}{a^{5} H(a)^{2} / H_{0}^{2}}=0
$$

The Lagrangian formalism

Find f1, f2

$$
\begin{aligned}
f_{1}(a, H(a)) & =a^{3} H(a) / H_{0} \\
f_{2}(a, H(a)) & =-\frac{3 \Omega_{\mathrm{m}} G_{\mathrm{eff}}(a) / G_{N}}{2 a^{2} H(a) / H_{0}}
\end{aligned}
$$

Lagrangian: $\quad \mathcal{L}=T-V=\frac{1}{2} a^{3} H(a) / H_{0} \delta^{\prime}(a)^{2}+\frac{3 \Omega_{\mathrm{m}} G_{\mathrm{eff}}(a) / G_{N}}{4 a^{2} H(a) / H_{0}} \delta(a)^{2}$

Hamiltonian: $\mathcal{H}=T+V=\frac{1}{2} a^{3} H(a) / H_{0} \delta^{\prime}(a)^{2}-\frac{3 \Omega_{\mathrm{m}} G_{\mathrm{eff}}(a) / G_{N}}{4 a^{2} H(a) / H_{0}} \delta(a)^{2}$
Depends on "time", not conserved!

Use the above to find conserved quantities for the ODE!

Noether's theorem and conserved quantities

Symmetries

 Conserved quantities

Examples:

1) Lagrangian independent of time, ie $\mathbf{t - >} \mathbf{t}+\boldsymbol{\delta} \mathbf{t}$
2) Lagrangian independent of position, ie $\mathbf{x}->\mathbf{x}+\boldsymbol{\delta x}$

Hamiltonian is conserved (constant energy)

Momentum px is conserved

Noether's theorem and conserved quantities

In general, given an infinitesimal transformation X such that

$$
\mathbf{X}=\alpha(\delta) \frac{\partial}{\partial \delta}+\frac{d \alpha(\delta)}{d a} \frac{\partial}{\partial \delta^{\prime}} \quad L_{X} \mathcal{L}=0
$$

Then, the quantity Σ is conserved:

$$
\Sigma=\alpha(a) \frac{\partial \mathcal{L}}{\partial \delta^{\prime}} \longleftarrow \text { Easy to prove with the EL equations as well! }
$$

Goal:Find $\alpha(a)$, such that Σ is conserved, ie demand the existence of a conserved quantity and determine the Symmetry! (standard method used to "guess" analytical solutions)

Noether's theorem and the growth rate

Solve the equations:

$$
\begin{aligned}
& L_{X} \mathcal{L}=0 \\
& \Sigma=a^{3}(a) a^{3} H(a) / H_{0} \delta^{\prime}(a)+\frac{3 \Omega_{\mathrm{m}} G_{\mathrm{eff}}(a) / G_{N} \delta(a) \alpha(a)}{2 a^{2} H(a) / H_{0}}=0 \\
& H_{0} \alpha(\delta) \delta^{\prime}(a)
\end{aligned}
$$

Solution: $\quad \alpha(a)=c e^{-\int_{a_{0}}^{a} \frac{3 \Omega_{\mathrm{m}} G_{\mathrm{ff}}(x) / \mathcal{N}_{N} \delta(x)}{x^{5} H(x)^{2} / H_{0}^{2} \delta^{\prime}(x)} d x}$

$$
\Sigma=a^{3} H(a) / H_{0} \delta^{\prime}(a) e^{-\int_{a_{0}}^{a} \frac{3 \Omega_{\mathrm{m}} G_{\text {eff }}(x) / G_{0} \delta(x)}{2 x^{H} H(x)^{2} / H_{0}^{N} \delta^{\prime}(x)} d x} \quad \square \Sigma=a_{0}^{3} H\left(a_{0}\right) \delta^{\prime}\left(a_{0}\right)
$$

Introduce growth rate:

$$
f(a) \equiv \frac{d l n \delta}{d \ln a} \quad \square \frac{a^{2} H(a) f(a)}{a_{0}^{2} H\left(a_{0}\right) f\left(a_{0}\right)} e^{\int_{a_{0}}^{a}\left(\frac{f(x)}{x}-\frac{3 \Omega_{\mathrm{m}} G_{\text {eff }}(x) / G_{N}}{2 x^{4} H(x)^{2} f(x)}\right) d x}=1
$$

Noether's theorem and the growth rate

Introduce fo8(a):

$$
\begin{array}{ll}
f \sigma_{8}(a) \equiv f(a) \sigma_{8}(a)=\xi a \delta^{\prime}(a) \\
\sigma_{8}(a)=\sigma_{8}(a=1) \frac{\delta(a)}{\delta(a=1)} & \delta(a)=\delta\left(a_{0}\right)+\int_{a_{0}}^{a} \frac{f \sigma_{8}(x)}{\xi x} d x \\
\xi \equiv \frac{\sigma_{8}(a=1)}{\delta(a=1)}
\end{array}
$$

New version: $\quad \frac{a^{2} H(a) f \sigma_{8}(a)}{a_{0}^{2} H\left(a_{0}\right) f \sigma_{8}\left(a_{0}\right)} \cdot e^{-\frac{3}{2} \Omega_{m} \int_{a_{0}}^{a} \frac{G_{\text {eff }}(x)}{G_{N}} \frac{\sigma_{8}(a=1) \frac{\delta\left(a_{0}\right)}{\delta(1)}+\int_{a_{0}}^{x} \frac{f \sigma_{8}(y)}{y} d y}{x^{4} H(x)^{2} / H_{0}^{2} f \sigma_{8}(x)} d x}=1$

i) $\mathbf{1 0 0 \%}$ equivalent

ii) Necessary as surveys measure fo8 form (Euclid: f(a)???)

The null test for the growth rate

Finally, the null test:

$$
\begin{aligned}
\mathcal{O}(z) & =\frac{a^{2} H(a) f(a)}{a_{0}^{2} H\left(a_{0}\right) f\left(a_{0}\right)} e^{\int_{a_{0}}^{a}\left(\frac{f(x)}{x}-\frac{3 \Omega_{m}}{2 x^{4} H(x)^{2} f(x)}\right) d x}=1 . \\
\mathcal{O}(z) & =\frac{a^{2} H(a) f \sigma_{8}(a)}{a_{0}^{2} H\left(a_{0}\right) f \sigma_{8}\left(a_{0}\right)} \times \\
& \times e^{-\frac{3}{2} \Omega_{m} \int_{a_{0}}^{a} \frac{\sigma_{8}(a=1) \frac{\delta\left(a_{0}\right)}{(1)}+\int_{a_{0}}^{x} \frac{f \sigma_{8}(y)}{y} d y}{x^{4} H(x)^{2} / H_{0}^{2} f \sigma_{8}(x)}} d x
\end{aligned}=1 .
$$

Notes:
i) $O(z)$ should be 1 at all $z!!!!$
ii) Independent of the DE model used (GR)
iii) Doesn't contain derivatives! (derivatives of noisy data are bad!!!)
iv) Deviations from unity could be: New physics (MoGs, DE perts), deviation from FRLW or tension in the data (H and fo8).

Strategy

Reconstruct the null test with : mock data $(\mathrm{H}(\mathrm{z})$ \& fo8(z))

The reconstruction can be done with $\longrightarrow \longrightarrow$ binning

Does the null test really work? How well???

The real data: fo8(z)

Index	z	$f \sigma_{8}(z)$	Refs.
1	0.02	0.360 ± 0.040	$[38]$
2	0.067	0.423 ± 0.055	$[39]$
3	0.25	0.3512 ± 0.0583	$[40]$
4	0.37	0.4602 ± 0.0378	$40]$
5	0.30	0.407 ± 0.055	41
6	0.40	0.419 ± 0.041	$[41]$
7	0.50	0.427 ± 0.043	41
8	0.60	0.433 ± 0.067	41
9	0.17	0.510 ± 0.060	42
10	0.35	0.440 ± 0.050	42
11	0.77	0.490 ± 0.018	42
12	0.44	0.413 ± 0.080	$[44$
13	0.60	0.390 ± 0.063	44
14	0.73	0.437 ± 0.072	44
15	0.80	0.470 ± 0.080	45
16	0.35	0.445 ± 0.097	46
17	0.32	0.384 ± 0.095	$47]$
18	0.57	0.423 ± 0.052	$48]$

[38] M. J. Ḧudson and S. J. Turnbull, Astrophys. J. 751, L30 (2013). arXiv:1203.4814 [astro-ph.CO]].
[39] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. StaveleySmith, G. B. Poole, L. Campbell and Q. Parker et al., Mon. Not. Roy. Astron. Soc. 423, 3430 (2012). arXiv:1204.4725 [astro-ph.CO]].
[40] L. Samushia, W. J. Percival and A. Raccanelli, Mon. Not. Roy. Astron. Soc. 420, 2102 (2012). arXiv:1102.1014 [astro-ph.CO]].
[41] R. Tojeiro, W. J. Percival, J. Brinkmann, J. R. Brownstein, D. Eisenstein, M. Manera, C. Maraston and C. K. McBride et al., arXiv:1203.6565 [astro-ph.CO]].
[42] Y. S. Song and W. J. Percival, JCAP 0910, 004 (2009). [4 arXiv:0807.0810 [astro-ph]].
[43] L. Guzzo, M. Pierleoni, B. Meneux, E. Branchini, O. L. Fevre, C. Marinoni, B. Garilli and J. Blaizot et al., Nature 451, 541 (2008). arXiv:0802.1944 [astro-ph]].
[44] C. Blake, S. Brough, M. Colless, C. Contreras, W. Couch, S. Croom, D. Croton and T. Davis et al., Mon. Not. Roy. Astron. Soc. 425, 405 (2012). arXiv:1204.3674 [astroph.CO]].
[45] S. de la Torre, L. Guzzo, J. A. Peacock, E. Branchini, A. Iovino, B. R. Granett, U. Abbas and C. Adami et al., arXiv:1303.2622 [astro-ph.CO]].

C. H. Chuang and Y. Wang, Mon. Not. Roy. Astron. Soc. 435, 255 (2013). arXiv:1209.0210 [astro-ph.CO]].
47] C. H. Chuang, F. Prada, F. Beutler, D. J. Eisenstein, S. Escoffier, S. Ho, J. P. Kneib and M. Manera et al., arXiv:1312.4889 [astro-ph.CO]].
48] L. Samushia, B. A. Reid, M. White, W. J. Percival, A. J. Cuesta, G. B. Zhao, A. J. Ross and M. Manera et al., Mon. Not. Roy. Astron. Soc. 439, 3504 (2014) arXiv:1312.4899 [astro-ph.CO]]

The real data: H(z)

Index	z	$H(z)$	Refs.
1	0.090	69 ± 12	49]
2	0.170	83 ± 8	$49]$
3	0.179	75 ± 4	49
4	0.199	75 ± 5	49
5	0.270	77 ± 14	49
6	0.352	83 ± 14	$49]$
7	0.400	95 ± 17	49
8	0.480	97 ± 62	49
9	0.593	104 ± 13	42
10	0.680	92 ± 8	49
11	0.781	105 ± 12	49
12	0.875	125 ± 17	49
13	0.880	90 ± 40	49
14	0.900	117 ± 23	$49]$
15	1.037	154 ± 20	49
16	1.300	168 ± 17	49
17	1.430	177 ± 18	$49]$
18	1.530	140 ± 14	49
19	1.750	202 ± 40	49
20	0.240	79.69 ± 2.32	50
21	0.430	86.45 ± 3.27	50
22	0.440	82.60 ± 7.80	51
23	0.570	96.80 ± 3.40	52
24	0.600	87.90 ± 6.10	51
25	0.730	97.30 ± 7.00	51]
26	2.36	226.0 ± 8.00	[53]

$\Lambda C D M, \Omega_{\mathrm{m}}=0.3, \mathrm{H} 0=70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$

[49] M. Moresco et al., JCAP 1208, 006 (2012) arXiv:1201.3609 [astro-ph.CO]].
[50] E. Gaztanaga, A. Cabre and L. Hui, Mon. Not. Roy Astron. Soc. 399 (2009) 1663 arXiv:0807.3551 [astroph]].
[51] C. Blake, S. Brough, M. Colless, C. Contreras, W. Couch, S. Croom, D. Croton and T. Davis et al., Mon. Not. Roy Astron. Soc. 425 (2012) 405 arXiv:1204.3674 [astroph.CO]].
[52] L. Anderson et al. [BOSS Collaboration], arXiv:1312.4877 [astro-ph.CO].
[53] A. Font-Ribera, D. Kirkby, N. Busca, J. Miralda-Escude, N. P. Ross, A. Slosar, J. Rich and E. Aubourg et al. JCAP 1405 (2014) 027 arXiv:1311.1767.

The models (mocks and modeling)

1) $\Lambda \mathrm{CDM}(\mathrm{w}=-1), \Omega_{\mathrm{m}}=0.3, \mathrm{H} 0=70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}, \sigma 8=0.8$
$H(a)^{2} / H_{0}^{2}=\Omega_{\mathrm{m}} a^{-3}+\left(1-\Omega_{\mathrm{m}}\right) a^{-3(1+w)}$
2) $\mathrm{wCDM}(\mathrm{w}=-0.8), \Omega_{\mathrm{m}}=0.3, \mathrm{H} 0=70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}, \sigma 8=0.8$
$H(a)^{2} / H_{0}^{2}=\Omega_{\mathrm{m}} a^{-3}+\left(1-\Omega_{\mathrm{m}}\right) a^{-3(1+w)}$
D. Sapone, M. Kunz and L. Amendola, Phys. Rev. D 82,
$G_{\text {eff }}(a) / G_{N} \equiv Q(a)=1+\frac{1-\Omega_{m_{0}}}{\Omega_{m_{0}}} \frac{1+w}{1-3 w} a^{-3 w}$
3) $\mathrm{f}(\mathrm{R}) \Omega_{\mathrm{m}}=0.3, \mathrm{H} 0=70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}, \sigma 8=0.8$ (exactly $\Lambda C D M$ at background)

$$
\begin{aligned}
& f(R)=R-2 \Lambda+\alpha H_{0}^{2}\left(\frac{\Lambda}{R-3 \Lambda}\right)^{b}{ }_{2} F_{1}\left(b, \frac{3}{2}+b, \frac{13}{6}+2 b, \frac{\Lambda}{R-3 \Lambda}\right) \quad b=\frac{1}{12}(-7+\sqrt{73}) \\
& H(a)^{2}=H_{0}^{2}\left(\Omega_{\mathrm{m}} a^{-3}+1-\Omega_{\mathrm{m}}\right) \quad{ }_{\alpha}=(0.002,0.2) \\
& \begin{array}{l}
\text { S. Nesseris, 'Phys. Rev. D 88, } 123003 \text { (2013) } \\
\text { arXiv:1309.1055 [astro-ph.CO]]. }
\end{array} \\
& G_{\mathrm{eff}} / G_{N}=\frac{1}{F} \frac{1+4 \frac{k^{2}}{a^{2}} m}{1+3 \frac{k^{2}}{a^{2}} m}, \\
& m \equiv \frac{F_{, R}}{F}, \\
& F \equiv f_{, R}=\frac{\partial f}{\partial R} .
\end{aligned}
$$

The models (mocks and modeling)

4) $\mathrm{f}(\mathrm{G}) \Omega_{\mathrm{m}}=0.3, \mathrm{H} 0=70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}, \sigma 8=0.8$ (exactly $\Lambda C D M$ at background)

$H(a)^{2}=H_{0}^{2}\left(\Omega_{\mathrm{m}} a^{-3}+1-\Omega_{\mathrm{m}}\right)$
$\mathcal{G} \equiv R^{2}-4 R_{\mu \nu} R^{\mu \nu}+R_{\mu \nu \sigma \rho} R^{\mu \nu \sigma \rho}$
$\ddot{\delta}_{m}+C_{1}(k, a) \dot{\delta}_{m}+C_{2}(k, a) \delta_{m} \simeq 0$

5) LTB model (void)

$$
\begin{array}{ll}
d s^{2}=-d t^{2}+X^{2}(r, t) d r^{2}+A^{2}(r, t) d \Omega^{2} & \\
X(r, t)=A^{\prime}(r, t) / \sqrt{1-k(r)} & \begin{array}{l}
\Omega_{M}(r)=1+\left(\Omega_{M}^{(0)}-1\right) \frac{1-\tanh \left[\left(r-r_{0}\right) / 2 \Delta r\right]}{1+\tanh \left[r_{0} / \Delta r\right]} \\
\\
H_{0}(r)=
\end{array} H_{0}\left[\frac{1}{1-\Omega_{M}(r)}-\frac{\Omega_{M}(r)}{\left(1-\Omega_{M}(r)\right)^{3 / 2}} \times\right. \\
& \left.\times \operatorname{arcsinh} \sqrt{\frac{1-\Omega_{M}(r)}{\Omega_{M}(r)}}\right],
\end{array}
$$

$r_{0}=3.0 \mathrm{Gpc}, \Delta r=r_{0}, h_{0}=0.71, \Omega_{M}^{(0)}=0.19$

The models (mocks and modeling)

5) LTB model (void) (continues...)

Different expansion rates in different directions:

1) Longitudinal $\quad H_{L}=\dot{A}^{\prime} / A^{\prime}$
2) Transverse $\quad H_{T} \equiv \dot{A} / A$

Matter density profile: important parameters for the model

Finally:
Mocks: z->[0,2], dz=0.1, errors according to a Euclid-like and LSST-like survey

Results: Binning

Real data: 3 or 4 bins

Mock data: DE, $f(\mathrm{R}), \mathrm{f}(\mathrm{G})$

LTB

Results: Modeling with $\Lambda C D M$ \& wCDM

Real data: fit with $\Lambda C D M$ (left) and wCDM (right)

$$
G_{\mathrm{eff}} / G_{N}=1
$$

Results: Modeling with f(R)

Real data: fit with $f(R)$ SnIa (left) and $H(z)$ (right)

Results: Modeling with $\Lambda C D M$

$$
G_{\mathrm{eff}} / G_{N}=1
$$

\CDM mock:

DE perturbations mock:

Results: Modeling with $\Lambda C D M$

$$
G_{\text {eff }} / G_{N}=1
$$

f(R) mock:

f(G) mock:

Results: Modeling with $\Lambda C D M$

$$
G_{\text {eff }} / G_{N}=1
$$

LTB mock:

RESULTS:
The null test (with $\Lambda C D M$) can: detect $f(R), f(G)$, LTB confirm $\Lambda \mathbf{C D M}$
cannot discriminate DE perturbations

Savvas Nesseris

Home
Research
Gallery

In this part I will try to explain several key issues in data analysis and statistics with the use of explicit examples and numerical codes. Most of the following material is intended for master and fledgling PhD students who want to understand the basics of data analysis with a focus on cosmology and want to enter the world of research. However, some of the examples might be a bit more advanced...

Prerequisites:

1) Study Chapter 15 of Numerical Recipes regarding data-fititing, minimization, MCMC, statistics etc [1], see also [2].
2) Download the Mathematica codes found below and that illustrate several key issues, like minimization and basic statistical analysis, contours, MCMC, Fourier analysis, parallelization (CPU/GPU) etc.
3) Get CAMB from here and follow the instructions in the Readme to compile and install it. Gfortran $4.5+$ is highly recommended.
4) Run the codes and try to understand what's going on and most importantly why.

Numerlcal codes: (right-click on "Download" and hit "Save as")

1) Statistical Significance and Sigmas. Download.
2) Stuff about covariance matrices. Download
3) Data fitting, contours, error bars etc. Download.
4) Markov Chain Monte Carlo (MCMC). Download.
5) Bootstrap Monte Carlo. Download.
6) The Jack-knife [3]. Download.
7) Genetic Algorithms [4]. Download
8) A Mathematica Interface for CosmoMC, go here.

9a) Fitting the Snla data (standard) [5] Download.
9b) Fitting the Snla data (ultra-fast) [5] Download.
10) Joint Snla, CMB, BAO and growth-rate likelihoodl (ultra-fast) Download.
11) Parallelization CPU/GPU (coming soon).
12) The CMB power spectrum and the cosmological parameters; the correlation function (no RSD) Download.

Note 1: Mathematca 8+ lis recommended, but probably older verstons wl work as wel.
Note 2: The Genesc Algoritms code might have some memory Issues under Matiematca 9, in some systems.

Other cool stuff:

1) The sound Doppler effect visualized in Mathematica and a measurement of g , here.
2) How NDSolve works (also illustrates Dynamic and StepMonitor). Download
3) How ContourPlot works (also illustrates Dynamic and EvaluationMonitor). Download.
4) Slides of a talk I gave at the Discovery Center in Copenhagen (March 2011) on how the ancient Greek astronomers measured the distance to the Sun. Download.
