Reconstruction of the null-test for the matter density perturbations

Savvas Nesseris

Z

University of Geneva

SN, Domenico Sapone, Juan García-Bellido arXiv: 1409.3697, 1410.0338

Main points of the talk

- Introduction
- What is a null test?
- The null test for the growth-rate data
- The data
- Results:
 - i) Binning ii) Modeling
- Conclusions

The Standard Cosmological model

Einstein equations:

$$\begin{split} R_{\mu\nu} &- \frac{1}{2} g_{\mu\nu} R + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \\ G_{\mu\nu} & \text{Cosmological Constant} & T_{\nu}^{\mu} = P g_{\nu}^{\mu} + (\rho + P) U^{\mu} U_{\nu} \end{split}$$

Robertson-Walker metric:

$$ds^{2} = c^{2}dt^{2} - \alpha(t)^{2} \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}(d\theta^{2} + \sin(\theta)^{2}d\phi^{2})\right)$$

Continuity: (from Bianchi identities)

$$\nabla_{\nu}T^{\mu\nu} = 0 \quad \Longrightarrow \quad \dot{\rho} + 3H(\rho + P) = 0$$

The Standard Cosmological model

Hubble (1929): Universe is expanding

From redshift of distant galaxies

Riess et al. (1998): ... and actually is accelerating

from supernovae type Ia

2nd Friedmann equation:
$$\frac{\ddot{\alpha}}{\alpha} = -\frac{4\pi G}{3} \left(\rho(\alpha) + 3P(\alpha)\right) \implies P < -\frac{\rho}{3}$$

Equation of state
$$P = w \rho$$
 - $\begin{bmatrix} w = 0 & \text{Non-relativistic matter} & P << \rho \end{bmatrix}$
 $w = \frac{1}{3}$ Radiation $P = \frac{1}{3}\rho$

Known kinds of matter cannot explain the accelerated expansion of the universe!

Cosmological perturbations and structure formation

To understand structure formation, we need to study the metric (scalar) perturbations

$$ds^2 = -(1+2\Phi)dt^2 + a^2(t)(1-2\Psi)\delta_{ij}dx^i dx^j$$

Newtonian potentials

Disclaimer: Valid only in subhorizon scales (k^2>>H^2 a^2) and in (certain) metric theories with an FLRW metric, eg f(R), ~f(G), f(T), Scalar-Tensor etc. Other terms and conditions may apply.

The usual way to do things...

Test a variety of models, eg

Model 1: Λ CDM (w=-1)

Model 2: w(a)=w₀+w₁ (1-a)

Model 3: f(R)

... Model n: ???

The usual way to do things...

- Eg, SnIa data are given in terms of the distance modulus:
- DE is described by w(z) $w(z) \equiv \frac{P}{\rho}$

$$\mu_{obs}(z_i) \equiv m_{obs}(z_i) - M$$

$$w(z) = -1 + \frac{1}{3}(1+z)\frac{d\ln(\delta H(z)^2)}{d\ln z}$$
$$\delta H(z)^2 = H(z)^2/H_0^2 - \Omega_{0m}(1+z)^3$$

- Theoretical prediction: (flat universe)
- Minimize to find the best fit parameters:

$$D_L(z) = (1+z) \int_0^z dz' \frac{H_0}{H(z';\Omega_{0m}, w_0, w_1)}$$

 $\mu_0 = 42.38 - 5\log_{10}h$

$$\chi^2_{SnIa}(\Omega_{0m}, w_0, w_1) = \sum_{i=1}^N \frac{(\mu_{obs}(z_i) - \mu_{th}(z_i))^2}{\sigma_{\mu_i}^2}$$

The usual way to do things...

Problems:

- 1) Model bias (interpretation of the results depends on chosen models+assumptions)
- 2) Limited number of tested models (finite number of theories, impossible to test everything)

Can we find a more general and straightforward way to test the fundamental assumptions of our theories???

What is a null test?

A null test is a consistency relation that has to be true for all z and usually equal to zero or some constant value! Examples:

1) The Ωκ test of Clarkson et al:

2) The Om statistic of Shafieloo et al:

(arXiv: 0807.3548, 1004.0960)

$$Om(x) \equiv \frac{h^2(x) - 1}{x^3 - 1}, \qquad x = 1 + z, \qquad h(x) = H(x)/H_0$$

Can we find a null test for the growth rate???

The null test for the growth rate

The answer is yes!!!

$$\mathcal{O}(z) = \frac{a^2 H(a) f(a)}{a_0^2 H(a_0) f(a_0)} e^{\int_{a_0}^a \left(\frac{f(x)}{x} - \frac{3\Omega_{\rm m}}{2x^4 H(x)^2 f(x)}\right) dx} = 1$$
$$\mathcal{O}(z) = \frac{a^2 H(a) f \sigma_8(a)}{a_0^2 H(a_0) f \sigma_8(a_0)} \times e^{-\frac{3}{2}\Omega_m \int_{a_0}^a \frac{\sigma_8(a=1)\frac{\delta(a_0)}{\delta(1)} + \int_{a_0}^x \frac{f \sigma_8(y)}{y} dy}{x^4 H(x)^2 / H_0^2 f \sigma_8(x)}} dx = 1.$$

$$G_{\text{eff}}/G_N = 1$$

SN, Domenico Sapone, Juan García-Bellido arXiv: 1409.3697, 1410.0338

Notes:

i) O(z) should be 1 at all z!!!!

- ii) Independent of the DE model used (GR)
- iii) Doesn't contain derivatives! (derivatives of noisy data are bad!!!)
- iv) Deviations from unity could be: New physics (MoGs, DE perts), deviation from FRLW or tension in the data (H and fσ8).

The Lagrangian formalism

Goal: Find a conserved quantity for the growth-rate.

Hint: create a Lagrangian that produces the ODE for growth and check for symmetries

$$\delta''(a) + \left(\frac{3}{a} + \frac{H'(a)}{H(a)}\right)\delta'(a) - \frac{3}{2}\frac{\Omega_m G_{\text{eff}}(a)/G_N\delta(a)}{a^5 H(a)^2/H_0^2} = 0$$

Euler-Lagrange equations:

$$\frac{\partial \mathcal{L}}{\partial \delta} - \frac{d}{da} \frac{\partial \mathcal{L}}{\partial \delta'} = 0$$

The Lagrangian formalism

Ansatz:
$$\mathcal{L} = T - V$$

 $V = \frac{1}{2}f_2(a, H(a))\delta(a)^2$ "kinetic term"
 $V = \frac{1}{2}f_2(a, H(a))\delta(a)^2$ "potential"

Use E-L eqs:
$$\delta''(a) + \left(\frac{\partial_a f_1(a, H)}{f_1(a, H)} + \frac{H'(a)\partial_H f_1(a, H)}{f_1(a, H)}\right)\delta'(a) + \frac{f_2(a, H)}{f_1(a, H)}\delta(a) = 0$$

Compare
to ODE: $\delta''(a) + \left(\frac{3}{a} + \frac{H'(a)}{H(a)}\right)\delta'(a) - \frac{3}{2}\frac{\Omega_m G_{\text{eff}}(a)/G_N\delta(a)}{a^5H(a)^2/H_0^2} = 0$

The Lagrangian formalism

Find f1, f2

$$f_1(a, H(a)) = a^3 H(a) / H_0$$

$$f_2(a, H(a)) = -\frac{3\Omega_{\rm m} G_{\rm eff}(a) / G_N}{2a^2 H(a) / H_0}$$

Lagrangian:
$$\mathcal{L} = T - V = \frac{1}{2}a^3 H(a)/H_0 \delta'(a)^2 + \frac{3\Omega_{\rm m}G_{\rm eff}(a)/G_N}{4a^2 H(a)/H_0} \delta(a)^2$$

Hamiltonian:
$$\mathcal{H} = T + V = \frac{1}{2}a^3 H(a)/H_0 \delta'(a)^2 - \frac{3\Omega_{\rm m}G_{\rm eff}(a)/G_N}{4a^2 H(a)/H_0}\delta(a)^2$$

Depends on "time", not conserved!

Use the above to find conserved quantities for the ODE!

Noether's theorem and conserved quantities

Examples:

Lagrangian independent
 of time, ie t->t+δt

2) Lagrangian independent of position, ie $x - x + \delta x$

Momentum px is conserved

Noether's theorem and conserved quantities

In general, given an infinitesimal transformation X such that

Then, the quantity Σ is conserved:

Goal:Find $\alpha(a)$, such that Σ is conserved, ie demand the existence of a conserved quantity and determine the

symmetry! (standard method used to "guess" analytical solutions)

SN, S. Capozziello and L. Perivolaropoulos arXiv: 0705.3586

Noether's theorem and the growth rate

Solve the equations:

$$L_X \mathcal{L} = 0 \qquad \qquad \alpha'(a)a^3 H(a)/H_0 \delta'(a) + \frac{3\Omega_{\rm m} G_{\rm eff}(a)/G_N \delta(a)\alpha(a)}{2a^2 H(a)/H_0} = 0$$

 $\Sigma = a^3 H(a) / H_0 \alpha(\delta) \delta'(a)$

Solution: $\alpha(a) = c \ e^{-\int_{a_0}^{a} \frac{3\Omega_{\rm m}G_{\rm eff}(x)/G_N\delta(x)}{2x^5H(x)^2/H_0^2\delta'(x)}dx}$

$$\Sigma = a^3 H(a) / H_0 \delta'(a) \ e^{-\int_{a_0}^a \frac{3\Omega_{\rm m} G_{\rm eff}(x) / G_N \delta(x)}{2x^5 H(x)^2 / H_0^2 \delta'(x)} dx} \quad \Longrightarrow \quad \Sigma = a_0^3 H(a_0) \delta'(a_0)$$

Introduce growth rate:

$$f(a) \equiv \frac{dln\delta}{dlna} \qquad \qquad \frac{a^2 H(a) f(a)}{a_0^2 H(a_0) f(a_0)} e^{\int_{a_0}^{a} \left(\frac{f(x)}{x} - \frac{3\Omega_{\rm m}G_{\rm eff}(x)/G_N}{2x^4 H(x)^2 f(x)}\right) dx} = 1$$

Noether's theorem and the growth rate

Introduce fo8(a):

$$f\sigma_8(a) \equiv f(a)\sigma_8(a) = \xi a\delta'(a) \qquad \bullet \delta(a) = \delta(a_0) + \int_{a_0}^a \frac{f\sigma_8(x)}{\xi x} dx$$
$$\sigma_8(a) = \sigma_8(a=1)\frac{\delta(a)}{\delta(a=1)} \qquad \bullet \xi \equiv \frac{\sigma_8(a=1)}{\delta(a=1)}$$

New version:
$$\frac{a^2 H(a) f \sigma_8(a)}{a_0^2 H(a_0) f \sigma_8(a_0)} \cdot e^{-\frac{3}{2}\Omega_m \int_{a_0}^a \frac{G_{\text{eff}}(x)}{G_N} \frac{\sigma_8(a=1) \frac{\delta(a_0)}{\delta(1)} + \int_{a_0}^x \frac{f \sigma_8(y)}{y} dy}{x^4 H(x)^2 / H_0^2 f \sigma_8(x)}} dx = 1$$

i) 100% equivalent

ii) Necessary as surveys measure fo8 form (Euclid: f(a)???)

The null test for the growth rate

Finally, the null test:

$$\mathcal{O}(z) = \frac{a^2 H(a) f(a)}{a_0^2 H(a_0) f(a_0)} e^{\int_{a_0}^{a} \left(\frac{f(x)}{x} - \frac{3\Omega_m}{2x^4 H(x)^2 f(x)}\right) dx} = 1$$

$$\mathcal{O}(z) = \frac{a^2 H(a) f \sigma_8(a)}{a_0^2 H(a_0) f \sigma_8(a_0)} \times e^{-\frac{3}{2}\Omega_m \int_{a_0}^{a} \frac{\sigma_8(a=1) \frac{\delta(a_0)}{\delta(1)} + \int_{a_0}^{x} \frac{f \sigma_8(y)}{y} dy}{x^4 H(x)^2 / H_0^2 f \sigma_8(x)}} = 1.$$

$$G_{\rm eff}/G_N = 1$$

Notes:

- i) O(z) should be 1 at all z!!!!
- ii) Independent of the DE model used (GR)
- iii) Doesn't contain derivatives! (derivatives of noisy data are bad!!!)
- iv) Deviations from unity could be: New physics (MoGs, DE perts), deviation from FRLW or tension in the data (H and fσ8).

Does the null test really work? How well???

The real data: fσ8(z)

Index	z	$f\sigma_8(z)$	Refs.
1	0.02	0.360 ± 0.040	38
2	0.067	0.423 ± 0.055	39
3	0.25	0.3512 ± 0.0583	40
4	0.37	0.4602 ± 0.0378	40
5	0.30	0.407 ± 0.055	41
6	0.40	0.419 ± 0.041	41
7	0.50	0.427 ± 0.043	41
8	0.60	0.433 ± 0.067	41
9	0.17	0.510 ± 0.060	42
10	0.35	0.440 ± 0.050	42
11	0.77	0.490 ± 0.018	42 43
12	0.44	0.413 ± 0.080	44
13	0.60	0.390 ± 0.063	44
14	0.73	0.437 ± 0.072	44
15	0.80	0.470 ± 0.080	45
16	0.35	0.445 ± 0.097	46
17	0.32	0.384 ± 0.095	47
18	0.57	0.423 ± 0.052	48

- (2013). [arXiv:1203.4814 [astro-ph.CO]]
- [39] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, G. B. Poole, L. Campbell and Q. Parker et al., Mon. Not. Roy. Astron. Soc. 423, 3430 (2012). arXiv:1204.4725 [astro-ph.CO]].
- [40] L. Samushia, W. J. Percival and A. Raccanelli, Mon. Not. Roy. Astron. Soc. 420, 2102 (2012). arXiv:1102.1014 [astro-ph.CO]]
- [41] R. Tojeiro, W. J. Percival, J. Brinkmann, J. R. Brownstein, D. Eisenstein, M. Manera, C. Maraston and C. K. McBride et al., arXiv:1203.6565 [astro-ph.CO]].

- [38] M. J. Hudson and S. J. Turnbull, Astrophys. J. 751, L30 [42] Y. S. Song and W. J. Percival, JCAP 0910, 004 (2009). [46] C. H. Chuang and Y. Wang, Mon. Not. Roy. Astron. Soc. arXiv:0807.0810 [astro-ph]].
 - O. L. Fevre, C. Marinoni, B. Garilli and J. Blaizot et al., Nature 451, 541 (2008). arXiv:0802.1944 [astro-ph]].
 - [44] C. Blake, S. Brough, M. Colless, C. Contreras, W. Couch, S. Croom, D. Croton and T. Davis et al., Mon. Not. Roy. Astron. Soc. 425, 405 (2012). arXiv:1204.3674 [astroph.CO]].
 - S. de la Torre, L. Guzzo, J. A. Peacock, E. Branchini, [45]A. Iovino, B. R. Granett, U. Abbas and C. Adami et al., arXiv:1303.2622 [astro-ph.CO]].

- 435, 255 (2013). arXiv:1209.0210 [astro-ph.CO]].
- [43] L. Guzzo, M. Pierleoni, B. Meneux, E. Branchini, ^[47] C. H. Chuang, F. Prada, F. Beutler, D. J. Eisenstein, S. Escoffier, S. Ho, J. P. Kneib and M. Manera et al., arXiv:1312.4889 [astro-ph.CO]]
 - [48]L. Samushia, B. A. Reid, M. White, W. J. Percival, A. J. Cuesta, G. B. Zhao, A. J. Ross and M. Manera et al., Mon. Not. Roy. Astron. Soc. 439, 3504 (2014). arXiv:1312.4899 [astro-ph.CO]].

The real data: H(z)

300

Index	z	H(z)	Refs.	
1	0.090	69 ± 12	$\overline{49}$	
2	0.170	83 ± 8	49	
3	0.179	75 ± 4	49	
4	0.199	75 ± 5	49	
5	0.270	77 ± 14	49	
6	0.352	83 ± 14	49	
7	0.400	95 ± 17	49	
8	0.480	97 ± 62	49	Passively ev
9	0.593	104 ± 13	42	
10	0.680	92 ± 8	49	
11	0.781	105 ± 12	49	
12	0.875	125 ± 17	49	
13	0.880	90 ± 40	49	
14	0.900	117 ± 23	49	
15	1.037	154 ± 20	49	
16	1.300	168 ± 17	49	
17	1.430	177 ± 18	49	/
18	1.530	140 ± 14	49	
19	1.750	202 ± 40	49	,
20	0.240	79.69 ± 2.32	50	
21	0.430	86.45 ± 3.27	50	
22	0.440	82.60 ± 7.80	51	
23	0.570	96.80 ± 3.40	52	
24	0.600	87.90 ± 6.10	51	
25	0.730	97.30 ± 7.00	51	/
26	2.36	226.0 ± 8.00	53	•

Passively evolving galaxies

250 200 150 100 50 0 0.0 0.5 1.0 1.5 2.0 2.5

ΛCDM, **Ω**_m=0.3, H0=70 km/s/Mpc

- [49] M. Moresco *et al.*, JCAP **1208**, 006 (2012) [arXiv:1201.3609 [astro-ph.CO]].
- [50] E. Gaztanaga, A. Cabre and L. Hui, Mon. Not. Roy. Astron. Soc. **399** (2009) 1663 [arXiv:0807.3551] [astroph]].
- [51] C. Blake, S. Brough, M. Colless, C. Contreras, W. Couch, S. Croom, D. Croton and T. Davis *et al.*, Mon. Not. Roy. Astron. Soc. **425** (2012) 405 [arXiv:1204.3674] [astroph.CO]].
- [52] L. Anderson *et al.* [BOSS Collaboration], arXiv:1312.4877 [astro-ph.CO].
- [53] A. Font-Ribera, D. Kirkby, N. Busca, J. Miralda-Escude, N. P. Ross, A. Slosar, J. Rich and E. Aubourg *et al.*, JCAP **1405** (2014) 027 [arXiv:1311.1767].

The models (mocks and modeling)

1) ΛCDM (w=-1), Ω_m=0.3, H0=70 km/s/Mpc, σ8=0.8

 $H(a)^2/H_0^2 = \Omega_{\rm m} a^{-3} + (1 - \Omega_{\rm m}) a^{-3(1+w)}$

2) wCDM (w=-0.8), Ω_m=0.3, H0=70 km/s/Mpc, σ8=0.8

$$H(a)^2/H_0^2 = \Omega_{\rm m}a^{-3} + (1 - \Omega_{\rm m})a^{-3(1+w)}$$
$$G_{\rm eff}(a)/G_N \equiv Q(a) = 1 + \frac{1 - \Omega_{m_0}}{\Omega_{m_0}}\frac{1+w}{1-3w}a^{-3w}$$

D. Sapone, M. Kunz and L. Amendola, Phys. Rev. D 82, 103535 (2010). arXiv:1007.2188 [astro-ph.CO]].

3) $f(R) \Omega_m = 0.3$, H0=70 km/s/Mpc, $\sigma 8 = 0.8$ (exactly ACDM at background)

The models (mocks and modeling)

4) $f(G) \Omega_m = 0.3$, H0=70 km/s/Mpc, $\sigma 8 = 0.8$ (exactly ACDM at background)

5) LTB model (void)

$$\begin{split} ds^2 &= -dt^2 + X^2(r,t) \, dr^2 + A^2(r,t) \, d\Omega^2 \\ X(r,t) &= A'(r,t) / \sqrt{1 - k(r)} & \Omega_M(r) = 1 + (\Omega_M^{(0)} - 1) \frac{1 - \tanh[(r - r_0)/2\Delta r]}{1 + \tanh[r_0/\Delta r]} \\ H_0(r) &= H_0 \left[\frac{1}{1 - \Omega_M(r)} - \frac{\Omega_M(r)}{(1 - \Omega_M(r))^{3/2}} \times \right. \\ & \times \operatorname{arcsinh} \sqrt{\frac{1 - \Omega_M(r)}{\Omega_M(r)}} \right], \end{split}$$

The models (mocks and modeling)

5) LTB model (void) (continues...)

Different expansion rates in different directions:

1) Longitudinal $H_L = \dot{A}' / A'$ $H_T \equiv \dot{A}/A$ 2) Transverse $H_T^2(t,r) = H_0^2(r) \left[\Omega_M(r) \frac{A_0^3(r)}{A^3(t,r)} + (1 - \Omega_M(r)) \frac{A_0^2(r)}{A^2(t,r)} \right]$

Matter density profile: important parameters for the model

Finally:

Mocks: z->[0,2], dz=0.1, errors according to a Euclid-like and LSST-like survey

Results: Binning

Real data: 3 or 4 bins

Results: Modeling with ACDM & wCDM

 $G_{\rm eff}/G_N = 1$

Real data: fit with ACDM (left) and wCDM (right)

Results: Modeling with f(R)

Real data: fit with f(R) SnIa (left) and H(z) (right)

Results: Modeling with ΛCDM

 $G_{\rm eff}/G_N = 1$

0.90 0.0

0.5

1.0

Z

1.5

2.0

Results: Modeling with ACDM

 $G_{\rm eff}/G_N = 1$

f(R) mock:

f(G) mock:

Results: Modeling with ΛCDM

LTB mock:

 $G_{\rm eff}/G_N = 1$

Conclusions - Outlook Introduced the null test O(z)

It can successfully detect MoG & LTB at many os, but not DE perturbations (effect too small??)

Results of real data are in good agreement with ΛCDM (~2σ)

16

spoke bad about **ACDM**

www.uam.es/savvas.nesseris

Savvas Nesseris

Research Gallery

Education

In this part I will try to explain several key issues in data analysis and statistics with the use of explicit examples and numerical codes. Most of the following material is intended for master and fledgling PhD students who want to understand the basics of data analysis with a focus on cosmology and want to enter the world of research. However, some of the examples might be a bit more advanced...

Prerequisites:

1) Study Chapter 15 of Numerical Recipes regarding data-fitting, minimization, MCMC, statistics etc [1], see also [2].

2) Download the Mathematica codes found below and that illustrate several key issues, like minimization and basic statistical analysis, contours, MCMC, Fourier analysis, parallelization (CPU/GPU) etc.

 Get CAMB from <u>here</u> and follow the instructions in the <u>Readme</u> to compile and install it. Gfortran 4.5+ is highly recommended.

4) Run the codes and try to understand what's going on and most importantly why.

Numerical codes: (right-click on "Download" and hit "Save as")

- 1) Statistical Significance and Sigmas. Download.
- 2) Stuff about covariance matrices. Download.
- 3) Data fitting, contours, error bars etc. Download.
- 4) Markov Chain Monte Carlo (MCMC). Download.
- 5) Bootstrap Monte Carlo. Download.
- 6) The Jack-knife [3]. Download.
- 7) Genetic Algorithms [4]. Download.
- 8) A Mathematica Interface for CosmoMC, go here.
- 9a) Fitting the Snla data (standard) [5] Download.
- 9b) Fitting the Snla data (ultra-fast) [5] Download.
- 10) Joint Snla, CMB, BAO and growth-rate likelihoodl (ultra-fast) Download.
- 11) Parallelization CPU/GPU (coming soon).

12) The CMB power spectrum and the cosmological parameters; the correlation function (no RSD) **Download**.

Note 1: Mathematica 8+ Is recommended, but probably older versions will work as well.

Note 2: The Genetic Algorithms code might have some memory issues under Mathematica 9, in some systems.

Other cool stuff:

- 1) The sound Doppler effect visualized in Mathematica and a measurement of g, here.
- 2) How NDSolve works (also illustrates Dynamic and StepMonitor). Download
- 3) How ContourPlot works (also illustrates Dynamic and EvaluationMonitor). Download.
- 4) Slides of a talk I gave at the Discovery Center in Copenhagen (March 2011) on how the ancient Greek astronomers measured the distance to the Sun. **Download**.