Pre-seminar What is ML?

Geneva University, Jan, 2020

- What is Machine learning?
- What is Dimensionality reduction?
- What is Clustering Analysis?
- What am I doing with ML?

What is Machine learning?

y = ax + b

Classification vs. regression

Classification

Supervised vs Unsupervised

What is Dimensionality reduction?

What is Clustering Analysis?

What am I doing with ML?

RFI mitigation

Inpainting CMB

masked

Inpainting CMB

See Co

Inpainting CMB

Medical physics

Original image

Registered image

Mining cosmic datasets +some cool DS stuff

Alireza Vafaei Sadr IPM, Tehran

Outline

Cosmology and BIG data
A Quick Review of Applications
Anomaly detection
DRAMA
Future directions

Cosmology/Astrophysics

E. Siegel, with images derived from ESA/Planck and the DoE/NASA/ NSF interagency task force on CMB research. From his book, Beyond The Galaxy.

Cosmology and Big data

Big Universe, Big Data: Machine Learning and Image Analysis for Astronomy

Jan Kremer, Kristoffer Stensbo-Smidt, Fabian Gieseke, Kim Steenstrup Pedersen, and Christian Igel

xmm-newton

It is getting hotter!

Number of physics submitted manuscripts that include "machine learning" in their abstracts.

A quick review on what people have done

Classification

http://cdn.spacetelescope.org/archives/images/screen/heic99020.jpg

Galaxy zoo challenge

Figure 1. Flowchart of the classification tasks for GZ2, beginning at the top centre. Tasks are colour-coded by their relative depths in the decision tree. Tasks outlined in brown are asked of every galaxy. Tasks outlined in green, blue, and purple are (respectively) one, two or three steps below branching points in the decision tree. Table describes the responses that correspond to the icons in this diagram.

https://www.galaxyzoo.org/

Classifying the Large Scale Structure of the Universe with Deep Neural Networks

M.A. Aragon-Calvo¹ * ¹Instituto de Astronomía, UNAM, Apdo. Postal 106, Ensenada 22800, B.C., México

Detection

RYAN HAUSES1 AND BRANT E. ROBERTSON2.1

A. Vafaei Sadr, ^{1,2,3,4} Etienne, E. Vos, ^{2,4,5}† Bruce A. Bausett, ^{2,15,6}‡ Zaffirah Hosenie,^{25,3} N. Osseer,²³ and Michelle Lochner²³

Data cleansing

Radio frequency interference mitigation using deep convolutional neural networks

Joël Akeret^{a,*}, Chihway Chang^a, Aurelien Lucchi^b, Alexandre Refregier^a

Cleaning our own Dust: Simulating and Separating Galactic Dust Foregrounds with Neural Networks K. Aylor,¹ M. Haq,² L. KNOX,¹ Y. HEZAVEH,^{3,4} AND L. PERREAULT-LEVASSEUR^{3,5,4} Gravitational Wave Denoising of Binary Black Hole Mergers with Deep Learning

Wei Wei^{a,b}, E. A. Huerta^{a,c}

Denoising Weak Lensing Mass Maps with Deep Learning

Masato Shirasaki,¹ Naoki Yoshida,^{2,3,4} and Shiro Ikeda^{5,6}

DENOISING GRAVITATIONAL WAVES WITH ENHANCED DEEP RECURRENT DENOISING AUTO-ENCODERS

Hongyu Shen¹ Daniel George² Eliu. A. Huerta^{2,3} Zhizhen Zhao^{1,3}

Separating the EoR signal with a convolutional denoising autoencoder: a deep-learning-based method

Weitian Li,^{1*} Haiguang Xu,^{12*} Zhixian Ma,³ Ruimin Zhu,⁴ Dan Hu,¹ Zhenghao Zhu,¹ Junhua Gu,⁵ Chenxi Shan,¹ Jie Zhu³ and Xiang-Ping Wu⁵

Solar image denoising with convolutional neural networks

C. J. Díaz Baso¹, J. de la Cruz Rodríguez¹, and S. Danilovic¹

Simulation

CAN: Creative Adversarial Networks Generating "Art" by Learning About Styles and Deviating from Style Norms*

Ahmed Elgammal¹¹ Bingchen Liu¹ Mohamed Elhoseiny² Marian Mazzone³

PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION

 Tero Karras
 Timo Aila
 Samuli Laine
 Jaakko Lehtinen

 NVIDIA
 NVIDIA
 NVIDIA
 NVIDIA
 NVIDIA

https://towardsdatascience.com/do-gans-really-model-the-true-data-distribution-or-are-they-just-cleverly-fooling-us-d08df69f25eb

Cosmological N-body simulations: a challenge for scalable generative models

Nathanaël Perraudin^{1*}, Ankit Srivastava¹, Aurelien Lucchi², Tomasz Kacprzak³, Thomas Hofmann² and Alexandre Réfrégier³

Mass histogram

Peak histogram

Power spectral density

Real

Faile.

120

From Dark Matter to Galaxies with Convolutional Neural Networks

Jacky H. T. Yip' Xinyue Zhang, Yanfang Wang, Wei Zhang, Yueqiu Sun* Gabriella Contardo, Francisco Villaescusa-Navarro, Siyu He, Shy Genel, Shirley Ho

Deep learning dark matter map reconstructions from DES SV weak lensing data

Niall Jeffrey,¹ • François Lanusse², Ofer Lahav¹, Jean-Luc Starck³

Learning to Predict the Cosmological Structure Formation

Siyu Hender, Yin Line, Yu Fengin, Shirley House Andreas, Slamak Ravanbakhshi, Wel Chen, and Barnabás Póczos

CMB-GAN: Fast Simulations of Cosmic Microwave background Anisotropy maps using Deep Learning

Amit Mishra", Pranath Reddy", Rahul Nigam"

SC-FEGAN: Face Editing Generative Adversarial Network with User's Sketch and Color

Youngjoo Jo Jongyoul Park

https://arxiv.org/pdf/1905.08233v1.pdf

Anomaly detection

The light from quasar pairs reach Earth, although some were absorbed by the gas in the cosmic web, Springel et al. (2005) (cosmic web) / J. Neidel, MPIA

10 FIND THE ODD ONE IN 60 SECONDS

Figure 1 A plot of recent major astronomical discoveries, taken from (Ekers 2009), of which seven were "known-unknowns" (i.e. discoveries made by testing a prediction) and ten were "unknownunknowns" (ie. a serendipitous result found by chance while performing an experiment with different goals). The data in this plot are taken from Wilkinson et al. (2004).

Norris, R. P. (2017). Discovering the unexpected in astronomical survey data. Publications of the Astronomical Society of Australia, 34.

Table 1 Major discoveries made by the Hubble Space Telescope (*HST*). Of the *HST*'s "top ten" discoveries (as ranked by National Geographic magazine), only one was a key project used in the *HST* funding proposal (Lallo 2012). A further four projects were planned in advance by individual scientists but not listed as key projects in the *HST* proposal. Half the "top ten" *HST* discoveries were unplanned, including two of the three most cited discoveries, and including the only *HST* discovery (Dark Energy) to win a Nobel prize. This Table was previously published by Norris et al. (2015).

Project	Key	Planned?	Nat Geo	Highly	Nobel
0.074	Project?		top ten?	cited?	Prize?
Use cepheids to improve value of H_0	1	 	1	1	
UV spectroscopy of ig medium	1	~			
Medium-deep survey	1	1			
Image quasar host galaxies		1	1		
Measure SMBH masses		1	1		
Exoplanet atmospheres		1	1		
Planetary Nebulae		1	1		
Discover Dark Energy			1	1	\checkmark
Comet Shoemaker-Levy			1		
Deep fields (HDF, HDFS, GOODS, FF, etc)			1	\checkmark	
Proplyds in Orion			1		
GRB Hosts			\checkmark		1

Neural network-based anomaly detection for high-resolution X-ray spectroscopy

Y. Ichmohe 12. and S. Yamada,³

Search for unusual objects in the WISE Survey

Aleksandra Solarz¹, Mariej Itilirki^{2 † 8} and Agniezzka Pollo^{1 4}

SELF-SUPERVISED ANOMALY DETECTION FOR NARROWBAND SETI

Youfan Gerry Zhang[†], Ki Hyun Woo^{*}, Seung Wool Son[†], Andrew Stemton^{1,3,1,4}, Steve Cruft[†]

Anomaly detection for machine learning redshifts applied to SDSS galaxies

Ben Hoyle^{1,2}, Markus Michael Rau^{1,4}, Kerstin Paech^{1,2}, Christopher Bonnett^a Stella Seitz^{1,4}, Jochen Weller^{1,2,4}

Active Anomaly Detection for time-domain discoveries

E. E. O. Ishida¹^{*}, M. V. Korniko²³^{*}, K. L. Malanchev²³, M. V. Pruzhinskaya², A. A. Volnova⁴, V. S. Korolev⁵⁶, F. Mondon¹, S. Sreejith¹, A. Malancheva² and S. Das⁸

Anomaly Detection in the Open Supernova Catalog

M. V. Pruzhinskaya,¹* K. L. Malanchev,^{1,2}† M. V. Kornilov,^{1,2} E. E. O. Ishida,³ F. Mondon,³ A. A. Volnova⁴ and V. S. Korolev^{5,6}

Current projects in SKA (MeerKAT) DS team:

- Source detection (Mightee, SKAch-I)
- Anomaly detection WTF, PLAsTiCC
- RFI simulation/mitigation
- Extended source simulation
- Observation strategy

A Flexible Framework for Anomaly Detection via Dimensionality Reduction

A. Vafaei Sadr, B. Bassett, M. Kunz ISCMI-2019

No Free Lunch Theorems

- Any two optimization algorithms are equivalent when their performance is averaged across all possible problems
- No anomaly detection algorithm works for all anomalies
- No anomaly algorithm is "best" on average.
- Different algorithms work for different anomalies
- So lets consider families of anomaly algorithms

Dimensionality Reduction Anomaly Meta Algorithm

https://github.com/vafaei-ar/drama

Dimensionality reduction

Clustering

As an example: MNIST

DRAMA (Dimensionality Reduction Anomaly Meta-Algorithm):

Dimensionality Reduction Technique

- Autoencoder
- Variational autoencoder
- principal component analysis
- independent component analysis
- non negative matrix factorization

Also newly added:

- Convolutional (V)AE (1D)
- Convolutional (V)AE (2D)
- Convolutional UMAP

Clustering

Clustering

Distance metrics

Metric	definition
LI	$\sum_i u_i - v_i $
L2	$ u - v _2$
L4	$ u - v _4$
wL2	$\left\ \frac{u-v}{\sigma} \right\ _2$
wL4	$\left\ \frac{u-v}{\sigma}\right\ _4$
Bray-Curtis	$\sum u_i - v_i / \sum u_i + v_i $
Chebyshev	$\max_i u_i - v_i $
Canberra	$\sum_i rac{ u_i - v_i }{ u_i + v_i }$
correlation	$1 - \frac{(u-\bar{u})\cdot(v-\bar{v})}{ (u-\bar{u}) _2 (v-\bar{v}) _2}$
Mahalanobis	$\sqrt{(u-v)C^{-1}(u-v)^T}$

Comparison with LOF and i-forest:

Data set	# point	# outliers	
lympho	148	18	6
breastw	683	9	239
wine	129	13	10
vertebral	240	6	30
glass	214	9	9
pima	768	8	268
letter	1600	32	100
thyroid	3772	6	93
ionosphere	351	33	126
cardio	1831	21	176
wbc	378	30	21
annthyroid	7200	6	534
arrhythmia	452	274	66
vowels	1456	12	50
satellite	6435	36	2036
satimage-2	5803	36	71
optdigits	5216	64	150
mammography	11183	6	260
shuttle	49097	9	3511
mnist	7603	100	700
pendigits	6870	16	156
musk	3062	166	97
sutp	95156	3	30
http	567498	3	2211
COVEL	286048	10	2747
speech	3686	400	61

Simulated

Real

Benchmark metrics:

$$MCC = \frac{(TP \times TN) - (FP \times FN)}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

$$\text{RWS} = \frac{1}{N(N+1)} \sum_{i=1}^{N} w_i I_i$$

Table 6: Real dataset scores (all $\times 100$). You can see ensemble method results for each DRTs as first five columns (best is yellow). The next four columns are the recommended DRT, splitting level and metrics, LOF results (best for number of neighbors equals 5.10 and 35) and isolated forest, respectively (best is blue). Errors are 1 standard deviation and are only shown if larger than unity.

Dataset	 DRT-metric	AUC(%)			MCC(%)			RWS(%)		
		DRAMA	LOF	i-Forest	DRAMA	LOF	i-Forest	DRAMA	LOF	i-Forest
arrhythmia	NMF-L2	83	80	80	41	40 ± 3	40 ± 3	37	42 ± 3	42 ± 3
shuttle	NMF-L2	99	95 ± 13	100	92	87 ± 27	96 ± 1	99	85 ± 25	93 ± 2
smtp	NMF-L2	86	91	91	17	0	0	20	0	0
lympho	NMF-wL2	99	100	100	83	86 ± 10	88±8	211	79 ± 14	50 ± 13
thyroid	NMF-wL2	96	97 ± 2	198	43	52 ± 11	55 ± 5	42	19±10	52:#4
anuthyroid	NMF-wL2	69	81±3	82 ± 2	18	26 ± 2	26 ± 1	18	24±1	24 ± 1
musk	NMF-wL2	TON:	95 ± 14	100	0.001	88 ± 25	97 ± 3	100	80 ± 27	94 ± 5
letter	NMF-Mah.	88	65 ± 9	62 ± 1	42	7 ± 14	3 ± 2	33	12±8	10 ± 3
vowels	NMF-Mah.	95	77 ± 7	75±3	36	19 ± 7	17 ± 6	墨	18 ± 7	15 ± 5
wine	ICA-L2	100	82 ± 6	79 ± 2	80	17 ± 25	8 ± 7	12	28 ± 22	21 ± 13
cardio	ICA-L2	0.3	90 ± 10	93 ± 1	50	44 ± 11	48 ± 3	20-1 1	43 ± 10	46 ± 4
optdigits	ICA-corr.	81	71±5	71±5	Ú.	012	0±2	-Ű	4±3	3 ± 3
mnist	ICA-corr.	98	79 ± 3	80 ± 2	52	22 ± 5	23 ± 5	444	26 ± 3	27 ± 3
glass	ICA-canb.	03	70 ± 3	69 ± 1	30	8 ± 3	7	11	10 ± 4	9 ± 4
http:	AE-L2	100	94 ± 19	100	89	87 ± 29	97 ± 2	998	88 ± 30	98
whe	AE-L2	Direction	94	94	012.9	51 ± 3	51 ± 2	$53 \pm 10^{\circ}$	41±5	41±5
maninog.	AE-L2	88.+.2	85.±4	86	30:±:7	20 ± 3	20 ± 3	26 ± 8	15 ± 3	15 ± 2
breastw	AE-L2	99	94 ± 16	99	95	78 ± 32	89	2.81	84 ± 16	89
pima	AE-wL2	76.a.l.	67 ± 3	68	30=6	25 ± 4	26 ± 2	183 ± 4	49±2	50 ± 2
vertebral	VAE-cheb.	79 - 6	37 ± 6	35 ± 1	20 ± 4	-10 ± 2	-11 ± 2	35±6	5 ± 3	4 ± 3
ionusphere	VAE-Mah.	503-11	86 ± 2	85	10+2	50 ± 8	47 ± 2	To + 3	53 ± 8	50 ± 2
pendigits	none-L4	981	91 ± 12	95	46	31 ± 9	34 ± 3	53	28 ± 8	31 ± 3
satimage-2	none-L4	200	96 ± 11	99	91.	80 ± 23	87 ± 2	5	70 ± 22	77 ± 4
COVEL	none-wL4	96	86 ± 10	89 ± 3	6	8±3	9 ± 2	50	7 ± 2	8 ± 2
satellite	none-canb.	77	69 ± 4	70 ± 1	38	33 ± 8	36 ± 2	39	39 ± 2	40 ± 1
speech	none-canb.	501	49 ± 5	48 ± 1	3	1 ± 3	0 ± 1	Ω.	2 ± 2	1±1

AE, VAE, PCA, ICA, NMF, ...? L1, L2, L4, Chebyshev, Canbera, ...?

Semi-supervised or active learning DRAMA vs. LOF vs. iforest

Local anomaly in low dimension

n_f=100

New class anomaly in low dimension

n_f=100

Local anomaly in high dimension

 $n_{f} = 3000$

New class anomaly in high dimension

 $n_{f} = 3000$

Averaged on real data

Widefield ouTlier Finder (WTF)

Includes 337 boring objects and 17 interesting

AUC: 87 MCC: 26 RWS: 31

boring

interesting

Future directions

- 2D convolutions
- PLAsTiCC (Kaggle competitions)
- Deep learning based clustering
- Graphical user interface
- Active learning mode
- Detect and classify
Thanks for your attention.

You can find DRAMA here https://github.com/vafaei-ar/drama

