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Numerical solution of ODEs in a 
quarter of an hour 

15 minutes of fun! 



The first ODE method 

Consider only explicit systems of first 
order equations with known initial 
conditions: 
𝒚′ = 𝑓 𝑡, 𝒚 , 𝒚𝑖 = 𝒚 𝑡𝑖 . 

Approximate the derivative at time 𝑡𝑛 by 

𝒚𝑛
′ ≃
𝒚𝑛+1 − 𝒚𝑛
𝑡𝑛+1 − 𝑡𝑛

, 

we find the forwards Euler method: 
𝒚𝑛+1 = 𝒚𝑛 + 𝑓 𝑡𝑛, 𝒚𝑛 ℎ 
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...but never use it! 

Consider a test equation 
𝑦′ = −15𝑦, 𝑦 𝑡 = 𝑦 0 𝑒−15𝑡 
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What went wrong? 

• Different time scales 
– the dynamic time scale is different from the time 

scale of interest.  

– Cosmology: 𝜏int 𝑣𝑠 𝜏𝐻0  

– Example from before: 𝜏int =
1

15
 𝑣𝑠 [0,1] 

• Equilibrium 
– a trivial equilibrium solution exists. 

– Cosmology: Tight coupling limit 

– Example from before: 𝑦 𝑡 → 0 
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Similar to WIMP Freeze-Out 
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The test equation 

Consider the test equation 
𝑦′ = 𝑎𝑦, 𝑦 𝑡 = 𝑦 0 𝑒𝑎𝑡. 

The forwards Euler method reads 
𝑦𝑛+1 = 𝑦𝑛 + 𝑓 𝑡, 𝑦𝑛 ℎ 
= 𝑦𝑛 + 𝑎𝑦𝑛ℎ 
= 1 + 𝑎ℎ 𝑦𝑛 

Remaining bounded for Re 𝑎 < 0 requires 

1 + 𝑎ℎ ≤ 1. Thus 𝑎 = −15 requires ℎ <
2

15
. 
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Stability issue revisited 

So we must have ℎ <
2

15
, even during 

equilibrium evolution! 
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Let’s try something different... 

Approximate the derivative at 
time 𝑡𝑛+1 by 

𝒚𝑛+1
′ ≃

𝒚𝑛+1 − 𝒚𝑛
𝑡𝑛+1 − 𝑡𝑛

 

This leads to the backwards 
Euler method: 
𝒚𝑛+1 = 𝒚𝑛 + 𝑓 𝑡𝑛+1, 𝒚𝑛+1 ℎ. 
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Backwards Euler 

The equation 
𝒚𝑛+1 = 𝒚𝑛 + 𝑓 𝑡𝑛+1, 𝒚𝑛+1 ℎ 

is in general a system of non-linear, coupled 
equations. Bad idea? 

Consider 𝑦′ = 𝑎𝑦: 
𝑦𝑛+1 = 𝑦𝑛 + 𝑎𝑦𝑛+1ℎ ⇒ 

𝑦𝑛+1 =
1

1 − 𝑎ℎ
𝑦𝑛. 
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Always stable for 
𝑹𝒆 𝒂 < 𝟎! 



Best method for perturbations? 

Explicit method 

Pros: 

• Easy to code ODE-solver 

• Fast (well) after tight 
coupling 

Cons: 

• Stiffness must be removed 
by hand by TCA 

• Not robust against new 
physics 

Implicit method 

Pros: 

• Eliminate the need for TCA 

• Very robust against users 

Cons: 

• Can be slow due to 
algebraic system 

• More difficult to code 
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evolver_ndf15.c 

ndf15: multistep extension 
of backwards Euler. 

• Speed relies on 

– Variable order 1-5 

– Adaptive step size 

– Dense output 

– Recycle Jacobians for 
Newtons method 

– Sparse LU decompositions 
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Various slides not used 



Runge-Kutta methods 

• Definition of a s-stage 
Runge-Kutta method 

• Butcher tableau 

• Explicit methods 

– Euler, RK4 

• Embedded methods 

– RKDP(4)5 

• Implicit Runge-Kutta? 

– BE, Radau.. 

𝒚𝑛+1 = 𝒚𝑛 + 𝑏𝑖𝒌𝑖

𝑠

𝑖=1

, 

𝒌𝑖 ≡ 𝑓 𝑡𝑛 + 𝑐𝑖ℎ, 𝒚𝑛 + 𝑎𝑖𝑗𝒌𝑗

𝑠

𝑗=1

. 
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𝑐1
𝑐2
⋮
𝑐𝑠

 

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑠
⋯ 𝑎2𝑠

⋮ ⋮
𝑎𝑠1 𝑎𝑠2

⋱ ⋮
⋯ 𝑎𝑠𝑠

 

𝑏1 𝑏2
𝑏1
∗ 𝑏2

∗
⋯ 𝑏𝑠
⋯ 𝑏𝑠

∗ 



Stability domains for various methods 
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BDF/NDF variable order methods 

Define the backwards 
difference operator: 
𝛻0𝒚𝑛 ≡ 𝒚𝑛, 
𝛻𝑗+1𝒚𝑛 ≡ 𝛻

𝑗𝒚𝑛 − 𝛻
𝑗𝒚𝑛−1. 

The BDF formula or order k: 

 
1

𝑗
𝛻𝑗𝒚𝑛+1 = ℎ𝑓(𝑡𝑛+1, 𝒚𝑛+1)

𝑘

𝑗=1

 

The case 𝑘 = 1 is the BE 
method. 

ndf15 is the method used in 
CLASS 
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