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Written solution will be made available progressively, after each session.

Exercise Ia: Comparison between lensed and unlensed tempera-
ture spectrum

Check the difference between the lensed and unlensed CTTl of scalars, to see the effect of smoothing of
the maxima and minima of the spectrum, and the extra damping induced by lensing on small scales.

Exercise Ib: Comparison between lensed and unlensed BB spec-
trum

Check the difference between the lensed and unlensed CBBl in presence of tensor modes, to see that B
modes are dominated by lensing on small scales. Use r = 0.2 like in BICEP results! To fix this value of
the tensor to scalar ratio, just add this line to your input file: r = 0.2

Exercise Ic: Comparison between adiabatic and isocurvature CMB
spectra

Check the difference between the unlensed CTTl of scalar modes for adiabatic and CDM isocurvature
(CDI) initial conditions (with index ncdi = 1), to check that peaks are suppressed in amplitude and
shifted in scale. In order to enhance the isocurvature spectrum, you may use the cdi isocurvature fraction
f cdi = 2, together with n cdi = 1.

Do the same with NID isocurvature modes (with index nnid = 1) to check that the suppression in
amplitude is less pronouced and the phase of NID and CDI are different. To enhance the isocurvature
spectrum, you may use f nid = 4, together with n nid = 1.

Exercise Id: Comparison between linear and non-linear matter
spectrum

Check the difference between the linear and non-linear matter power spectrum at z = 0 and z = 2, to
see that at low redshift non-linear corrections are present on larger scales.
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Solution Ia:

The solution of these exercises is of course not unique. You could e.g. run with the input file:

output = tCl,pCl,lCl

lensing = yes

root = output/base_

#

background_verbose = 1

thermodynamics_verbose = 1

perturbations_verbose = 1

transfer_verbose = 1

primordial_verbose = 1

spectra_verbose = 1

nonlinear_verbose = 1

lensing_verbose = 1

output_verbose = 1

Then you may plot with

python CPU -x output/base_cl.dat output/base_cl_lensed.dat

producing the figure
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or in matlab:

plot_CLASS_output({’output/base_cl.dat’,’output/base_cl_lensed.dat’},’TT’)
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Solution Ib:

You could e.g. run with the input file:

modes = s,t

r = 0.2

output = tCl,pCl,lCl

lensing = yes

root = output/st_

#

background_verbose = 1

thermodynamics_verbose = 1

perturbations_verbose = 1

transfer_verbose = 1

primordial_verbose = 1

spectra_verbose = 1

nonlinear_verbose = 1

lensing_verbose = 1

output_verbose = 1

Then you may plot with

python CPU -colnum 5 -x -t cl_log output/st_cl.dat output/st_cl_lensed.dat

producing the figure
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or in matlab:

plot_CLASS_output({’output/st_cl.dat’,’output/st_cl_lensed.dat’},’BB’)
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Solution Ic:

You could e.g. run with the two input files:

ic = ad cdi

f_cdi = 2.

n_cdi = 1.

output = tCl,pCl,lCl

lensing = yes

root = output/adcdi_

#

background_verbose = 1

thermodynamics_verbose = 1

perturbations_verbose = 1

transfer_verbose = 1

primordial_verbose = 1

spectra_verbose = 1

nonlinear_verbose = 1

lensing_verbose = 1

output_verbose = 1

ic = ad nid

f_nid = 4.

n_nid = 1.

output = tCl,pCl,lCl

lensing = yes

root = output/adnid_

#

background_verbose = 1

thermodynamics_verbose = 1

perturbations_verbose = 1

transfer_verbose = 1

primordial_verbose = 1

spectra_verbose = 1

nonlinear_verbose = 1

lensing_verbose = 1

output_verbose = 1

Then you may plot with

python CPU -x -t cl_log output/adcdi_cls_ad.dat output/adcdi_cls_cdi.dat

python CPU -x -t cl_log output/adnid_cls_ad.dat output/adnid_cls_nid.dat

producing the figures
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or in matlab:

plot_CLASS_output({’output/adcdi_cls_ad.dat’,’output/adcdi_cls_cdi.dat’},’TT’)

plot_CLASS_output({’output/adnid_cls_ad.dat’,’output/adnid_cls_nid.dat’},’TT’)
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Solution Id:

You could e.g. run with the input file:

output = tCl, mPk

non linear = halofit

z_pk = 0,2

P_k_max_h/Mpc = 10.

root = output/nl_

#

background_verbose = 1

thermodynamics_verbose = 1

perturbations_verbose = 1

transfer_verbose = 1

primordial_verbose = 1

spectra_verbose = 1

nonlinear_verbose = 1

lensing_verbose = 1

output_verbose = 1

Then you may plot with

python CPU -x output/nl_z1_pk.dat output/nl_z1_pk_nl.dat output/nl_z2_pk.dat

output/nl_z2_pk_nl.dat

producing the figure
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or in matlab:

plot_CLASS_output({’output/nl_z1_pk.dat’, ’output/nl_z1_pk_nl.dat’, ’output/nl_z2_pk.dat’,

’output/nl_z2_pk_nl.dat’},’P’)
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Exercise IIa: Printing and plotting background quantities

Reproduce this plot from the Dodelson book on Modern Cosmology, using the plotting software of your
choice (gnuplot, IDL, matlab, python, etc...). Note that Dodelson plots the three cosmological distances
dX in units of [1/H0], which is equivalent to saying that he plots the dimensionless products dXH0. We
recall that H0 = h/3000 Mpc−1.

Exercise IIb: Adding a species in the background module

Introduction. Many types of cosmological species are already available in class, but sometimes it will
be necessary to add another species. In this exercise you will add a fluid with equation of state parameter
w to class. A general fluid has already been implemented in class with equation of state parameter
w = w0 +wa(1− a/a0) and arbitrary sound speed c2s. Nevertheless the exercise is not entirely pointless,
because there could be situations where the model contains (or can be modelled by) two uncoupled fluids
with different equation of state parameters.

Reading and storing new parameters. We need class to read two additional parameters from the
.ini file: Omega efld and w efld. (efld ≡ extra fluid). First add the two new parameters (Omega0 efld,
w efld) to the background structure defined in background.h. Then open input.c and scroll down to
input init() which begins at around line 139. We need to add a couple of new lines to this function,
and in principle they could be added almost anywhere inside this function. However, all the species are
written in the same order all over the code, so it is nice to add the new species to the “order of species”
and then stick to this convention. The order is {photons, baryons, ultrarelativistic species, cold dark
matter, non-cold dark matter, curvature, lambda, fluid}. Since we are adding another fluid, it would fit
nicely on either side of the existing fluid. However in this particular function, the extra fluid part must
go before the lambda and fluid part, since the values assigned here will depend on Omega tot.
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Since everything related to the fluid species has fld at the end, you can just search for fld in your
editor. Just before the line

/* Omega_0_lambda (cosmological constant), (...) */

add a comment about the species you are adding. Now we must read the two input values of (Omega0 efld,
w efld): to this end we will utilise the macro1 class read double(name,destination). name should
be a string, e.g. "Omega efld" and destination should then be pba->Omega0 efld. We must also add
Omega0 efld to the total density:

Omega_tot += pba->Omega0_efld;

We must now set default values for the new parameters. Continue searching for instances of fld

until you find

pba->Omega0_fld = 0.;

Do the same for pba->Omega0 efld and put some default value of the equations of state parameter as
well.

Modifying the background evolution. Many small changes need to be made to background.c and
background.h. The strategy is to search the file for a similar species, in this case fld and replicate (read:
copy-paste-modify) the lines. Note that the evolution of the efld species is uniquely determined by the
scale factor, so we do not need to evolve the energy density and pressure in time. In class-language,
rho efld and p efld are known as {A}-variables: they are analytic functions of {B}-variables. (In the
vanilla vase, the only B-variable is the scale factor.) An upcoming version of class will contain a few
examples of species requiring extra B-variables.
Intermezzo: The unit of energy densities and pressure in class is defined in the following way:

ρCLASS ≡ 8πG

3c2
ρphysical. (1)

pCLASS ≡ 8πG

3c2
pphysical. (2)

What is the critical density today in class units? ρCLASS
crit,0 =

Going through background.c, you will realise that you also need to define a number of additional
parameters to background.h. Be careful to change all instances of fld to efld if you copy-paste!

Modifying the output. The last thing we need is to modify output.c to output the new fluid density
in the background data file. To this end we need to add 2 lines of code, utilising the macros
class fprintf columntitle(file,title,condition)

class fprintf double(file,value,condition)

Just search for these macros or fld as before. You can now create a .ini files where one uses e.g. the
parameters (Omega efld = 0.1, w efld = 0.1667 and root = efluid ), to simulate the case w = 1/6.
Run the code and check that the output efluid background.dat is correctly created, with one columns
for the extra fluid.

1A macro in C is a few lines of code which will be pasted directly into the source code by the preprocessor before
compilation. The macros for reading parameters are defined in input.h.
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Checking the result by comparing with the in-built fluid component. You can duplicate
the previous .ini to a new one, where the same role should be played by the in-built fluid com-
ponent (Omega fld = 0.1, w0 fld = 0.1667, wa fld = 0. and root = fluid , while the parameter
Omega efld should either be set to zero, or left blank, or commented out).

Check that in this new input file, when you leave the output field set like in explanatory.ini

(starting with output = tCl,...), your run returns an error. This is normal, and a good way to learn
on the error management system in class. Have a look at the error message. In which module did the
error occur? You can have a look also at the exact line producing the error.

The reason for the error is that for w0 fld>0, the code cannot find initial conditions for the fluid
perturbations in the standard way: hence the perturbation module contains a protection against this
case. Since we are only interested in the background evolution, we can avoid this error by not computing
output spectra. This is easily done by commenting the output line output = tCl, ... in the .ini-files.
Check that the code runs correctly in that case.

By playing with other values of w0 fld, you can also check that values are now allowed up to 1/3.
Above this value, check that there is another error message, now coming from another module. This comes
from a second protection: for values w0 fld >= 1/3, the fluid would dominate over ordinary radiation at
early times, and the initial conditions for the background evolution cannot be set in the standard way.

You should now finally compare the energy densities rho fld and rho efld which should be identical,
for the same values of Ω and w < 1/3. Plot this energy density against rho cdm and rho ur. Your plot
should be similar to figure 1.
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Figure 1: Energy densities of CDM, massless neutrinos and a fluid with equation of state parameter
w = 0.1667 ' 1/6.
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Solution of exercise IIa.

Dodelson compares two ΛCDM models with ΩΛ = 0 and ΩΛ = 0.7. Hence we can create two input files,
leaving most parameters at their default values, but writing at least:

in omega0.ini:

H0 = 70. # for this exercise, this does not matter, since in the final plot

# the distances are in units of 1/H_0

Omega_b = 0.05

Omega_cdm = 0.95 # splitting between Omega_b and Omega_cdm

# does not matter provided that the sum is 1

write background = yes

root = output/omega0_

in omega7.ini:

H0 = 70. # for this exercise, this does not matter, since in the final plot

# the distances are in units of 1/H_0

Omega_b = 0.05

Omega_cdm = 0.25 # splitting between Omega_b and Omega_cdm

# does not matter provided that the sum is 0.3 (= 1 - Omega_Lambda)

write background = yes

root = output/omega7_

(Exemples of such files are available on-line in the exercise directory). After running
> ./class omega0.ini

> ./class omega7.ini

we can reproduce the Dodelson plot using our preferred plotting software. Using the MATLAB function
plot CLASS output() it is enough to type

plot_CLASS_output({’output/omega0_background.dat’,’output/omega7_background.dat’},...

{’lum’,’comov. dist’,’ang’},...

’xvariable’,’z’,...

’xlim’,[0.08,10],...

’EpsFilename’,’Dodelson’)

Given that all three titles have the word dist in common, we could also have typed ’dist’ instead of
{’lum’,’comov. dist’,’ang’}. Using gnuplot, first go to the output/ directory and open gnuplot by
typing
> gnuplot

we can now enter:

set logscale

x=0.7/3000

plot [0.07:10][0.07:20] ’omega7_background.dat’ u 1:($5*x) w l\

’omega7_background.dat’ u 1:($6*x) w l,\

’omega7_background.dat’ u 1:($7*x) w l,\
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’omega0_background.dat’ u 1:($5*x) w l,\

’omega0_background.dat’ u 1:($6*x) w l,\

’omega0_background.dat’ u 1:($7*x) w l

or equivalently, for a better presentation, we can write a gnuplot script dodelson.gnu containing:

set term po eps

set output "dodelson.eps"

set logscale

x=0.7/3000

set size 1,0.8

set xlabel "z"

set ylabel "Distances (1/H0)"

set key top left

plot [0.07:10][0.07:20] ’omega7_background.dat’ u 1:($5*x) t "com. dist." w l lt 1 lw 4,\

’omega7_background.dat’ u 1:($6*x) t "ang. diam. dist." w l lt 2 lw 4,\

’omega7_background.dat’ u 1:($7*x) t "lum. dist." w l lt 3 lw 4,\

’omega0_background.dat’ u 1:($5*x) notitle w l lt 1 lw 2,\

’omega0_background.dat’ u 1:($6*x) notitle w l lt 2 lw 2,\

’omega0_background.dat’ u 1:($7*x) notitle w l lt 3 lw 2

(This files is available on-line in the exercise directory). After
> gnuplot dodelson.gnu

we get the figure dodelson.eps that looks like:
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Solution of exercise IIb.

Here is the full list of lines that need to be added to the code in order to solve the exercise. We don’t
give exact line numbers: this is somewhat arbitrary and should be clear from the text of the exercise.

In source/input.c:

...

/* The extra fluid */

class_read_double("Omega_efld",pba->Omega0_efld);

class_read_double("w_efld",pba->w_efld);

Omega_tot += pba->Omega0_efld;

...

pba->Omega0_efld = 0.;

pba->w_efld = 1./3.;

...

In include/background.h:

...

double Omega0_efld;

double w_efld;

...

int index_bg_rho_efld;

...

short has_efld;

...

In source/background.c:

...

/* extra fluid with w */

if (pba->has_efld == _TRUE_) {

pvecback[pba->index_bg_rho_efld] = pba->Omega0_efld * pow(pba->H0,2)

/ pow(a_rel,3.*(1.+pba->w_efld));

rho_tot += pvecback[pba->index_bg_rho_efld];

p_tot += (pba->w_efld) * pvecback[pba->index_bg_rho_efld];

}

...

if (pba->has_efld == _TRUE_) {

Omega0_tot += pba->Omega0_efld;

}

...

11



pba->has_efld = _FALSE_;

...

if (pba->Omega0_efld != 0.)

pba->has_efld = _TRUE_;

...

/* - index for extra fluid */

class_define_index(pba->index_bg_rho_efld,pba->has_efld,index_bg,1);

...

In source/output.c:

...

class_fprintf_columntitle(*backfile,"(.)rho_efld [Mpc^-2]",pba->has_efld);

...

class_fprintf_double(backfile,pvecback[pba->index_bg_rho_efld],pba->has_efld);

...

If you want to plot quantities using the matlab script plot CLASS output.m, the plot can easily be
computed by plot CLASS output using the command

plot_CLASS_output({’output/fluid_background.dat’,’output/efluid_background.dat’},{’cdm’,’fld’,’ur’})

The output file will be myplot.eps, but it can be specified by adding ’EpsFilename’,’yourplot’ to
the output command.
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Exercise IVa: Comparing the two metric fluctuations φ(k, τ) and
ψ(k, τ)

This exercise can be done in any of the two gauges (newtonian, synchronous), because the part of the
perturbation module which plots the evolution of perturbations always writes results in the newtonian
gauge (if the code uses the synchronous gauge, variables are gauge-transformed just before being printed
in the output file).

• Plot the evolution of φ(k, τ) and ψ(k, τ) versus conformal time, for the two modes k = 0.01/Mpc
and k = 0.1/Mpc. Check that the two metric fluctuations coincide after the time of Hubble crossing
kτ ∼ 1, while before there is a constant offset.

• To understand why, plot the evolution of the part of the energy-momentum tensor of massless
neutrinos accounting for anisotropic pressure, multiplied by the square of the scale factor: a2(ρ̄ν +
p̄ν)σν . For that, you will need to modify the default output of the perturbation module: localise
the line where the quantity shear ur is printed in a file, and modify this line to plot (4/3)a2ρ̄νσν
instead (given that equation of state of massless neutrinos is p̄ν = ρ̄ν/3)). Indication: when the code
reaches this line, the vector pvecback is known (because it is passed among the input arguments
of the function perturb print variables(...)), and it does contain all background quantities at
the right time. Finally, print a2(ρ̄ν + p̄ν)σν as a function of τ .

• Check that the result of the (φ(k, τ), ψ(k, τ)) plot and of the a2(ρ̄+ p̄)σν are consistent with each
other, given the Einstein equation (Ma & Bertschinger eq. (23d)):

k2(φ− ψ) = 12πGa2(ρ̄+ p̄)σtot .

Exercise IVb: A very simple modification of gravity

There exist several ways to parametrise modifications of gravity. For instance, people often study the
effect of a function µ(k, τ) inserted in the Poisson equation, giving in the synchronous gauge:

k2η − 1

2

a′

a
h′ = −µ(k, τ) 4πGa2ρ̄totδtot .

The perturbed Einstein equations are defined in a single place, in perturb einstein(...). Localise the
above equation and implement, for instance, µ = 1 + a3. Print the evolution of φ and ψ in the standard
and modified models, and conclude that the CTTl ’s should be affected only through the late ISW effect.
Get a confirmation by comparing directly the Cl’s (printed in the files <root> cl.dat).

Exercise IVc: is the tensor temperature spectrum generated
mainly at recombination, or along the line-of-sight?

By doing small modifications of perturb sources(), check whether the tensor temperature spectrum
CTT,tens.
l comes mainly from photon perturbations on the last scattering surface, or from an integrated

Sachs-Wolfe effect.

For this exercise you can run the full class code with modes = s,t, output = tCl, l max tensors

= 500, lensing = no. In each run you can change the name of root = output/test to a more specific
name (e.g. root = output/ISW ) to get the output CTTl in different files (e.g. root = output/ISW cl.dat).
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