
Numerical Methods in CLASS

Thomas Tram

thomas.tram@epfl.ch

Numerical solution of ODEs in a
quarter of an hour

15 minutes of fun!

The first ODE method

Consider only explicit systems of first
order equations with known initial
conditions:
𝒚′ = 𝑓 𝑡, 𝒚 , 𝒚𝑖 = 𝒚 𝑡𝑖 .

Approximate the derivative at time 𝑡𝑛 by

𝒚𝑛
′ ≃
𝒚𝑛+1 − 𝒚𝑛
𝑡𝑛+1 − 𝑡𝑛

,

we find the forwards Euler method:
𝒚𝑛+1 = 𝒚𝑛 + 𝑓 𝑡𝑛, 𝒚𝑛 ℎ

3 April, 2014 CLASS/MontePython Workshop, Geneva 3

𝒚𝒏

𝐲𝐧+𝟏

𝐭𝐧 𝐭𝐧+𝟏

𝒉

...but never use it!

Consider a test equation
𝑦′ = −15𝑦, 𝑦 𝑡 = 𝑦 0 𝑒−15𝑡

3 April, 2014 CLASS/MontePython Workshop, Geneva 4

What went wrong?

• Different time scales
– the dynamic time scale is different from the time

scale of interest.

– Cosmology: 𝜏int 𝑣𝑠 𝜏𝐻0

– Example from before: 𝜏int =
1

15
 𝑣𝑠 [0,1]

• Equilibrium
– a trivial equilibrium solution exists.

– Cosmology: Tight coupling limit

– Example from before: 𝑦 𝑡 → 0

3 April, 2014 CLASS/MontePython Workshop, Geneva 5

Similar to WIMP Freeze-Out

3 April, 2014 CLASS/MontePython Workshop, Geneva 6

The test equation

Consider the test equation
𝑦′ = 𝑎𝑦, 𝑦 𝑡 = 𝑦 0 𝑒𝑎𝑡.

The forwards Euler method reads
𝑦𝑛+1 = 𝑦𝑛 + 𝑓 𝑡, 𝑦𝑛 ℎ
= 𝑦𝑛 + 𝑎𝑦𝑛ℎ
= 1 + 𝑎ℎ 𝑦𝑛

Remaining bounded for Re 𝑎 < 0 requires

1 + 𝑎ℎ ≤ 1. Thus 𝑎 = −15 requires ℎ <
2

15
.

3 April, 2014 CLASS/MontePython Workshop, Geneva 7

Stability issue revisited

So we must have ℎ <
2

15
, even during

equilibrium evolution!

3 April, 2014 CLASS/MontePython Workshop, Geneva 8

Let’s try something different...

Approximate the derivative at
time 𝑡𝑛+1 by

𝒚𝑛+1
′ ≃

𝒚𝑛+1 − 𝒚𝑛
𝑡𝑛+1 − 𝑡𝑛

This leads to the backwards
Euler method:
𝒚𝑛+1 = 𝒚𝑛 + 𝑓 𝑡𝑛+1, 𝒚𝑛+1 ℎ.

3 April, 2014 CLASS/MontePython Workshop, Geneva 9

𝒚𝒏

𝐲𝐧+𝟏

𝐭𝐧 𝐭𝐧+𝟏

Backwards Euler

The equation
𝒚𝑛+1 = 𝒚𝑛 + 𝑓 𝑡𝑛+1, 𝒚𝑛+1 ℎ

is in general a system of non-linear, coupled
equations. Bad idea?

Consider 𝑦′ = 𝑎𝑦:
𝑦𝑛+1 = 𝑦𝑛 + 𝑎𝑦𝑛+1ℎ ⇒

𝑦𝑛+1 =
1

1 − 𝑎ℎ
𝑦𝑛.

3 April, 2014 CLASS/MontePython Workshop, Geneva 10

Always stable for
𝑹𝒆 𝒂 < 𝟎!

Best method for perturbations?

Explicit method

Pros:

• Easy to code ODE-solver

• Fast (well) after tight
coupling

Cons:

• Stiffness must be removed
by hand by TCA

• Not robust against new
physics

Implicit method

Pros:

• Eliminate the need for TCA

• Very robust against users

Cons:

• Can be slow due to
algebraic system

• More difficult to code

3 April, 2014 CLASS/MontePython Workshop, Geneva 11

evolver_ndf15.c

ndf15: multistep extension
of backwards Euler.

• Speed relies on

– Variable order 1-5

– Adaptive step size

– Dense output

– Recycle Jacobians for
Newtons method

– Sparse LU decompositions

3 April, 2014 CLASS/MontePython Workshop, Geneva 12

Various slides not used

Runge-Kutta methods

• Definition of a s-stage
Runge-Kutta method

• Butcher tableau

• Explicit methods

– Euler, RK4

• Embedded methods

– RKDP(4)5

• Implicit Runge-Kutta?

– BE, Radau..

𝒚𝑛+1 = 𝒚𝑛 + 𝑏𝑖𝒌𝑖

𝑠

𝑖=1

,

𝒌𝑖 ≡ 𝑓 𝑡𝑛 + 𝑐𝑖ℎ, 𝒚𝑛 + 𝑎𝑖𝑗𝒌𝑗

𝑠

𝑗=1

.

3 April, 2014 CLASS/MontePython Workshop, Geneva 14

𝑐1
𝑐2
⋮
𝑐𝑠

𝑎11 𝑎12
𝑎21 𝑎22

⋯ 𝑎1𝑠
⋯ 𝑎2𝑠

⋮ ⋮
𝑎𝑠1 𝑎𝑠2

⋱ ⋮
⋯ 𝑎𝑠𝑠

𝑏1 𝑏2
𝑏1
∗ 𝑏2

∗
⋯ 𝑏𝑠
⋯ 𝑏𝑠

∗

Stability domains for various methods

3 April, 2014 CLASS/MontePython Workshop, Geneva 15

BDF/NDF variable order methods

Define the backwards
difference operator:
𝛻0𝒚𝑛 ≡ 𝒚𝑛,
𝛻𝑗+1𝒚𝑛 ≡ 𝛻

𝑗𝒚𝑛 − 𝛻
𝑗𝒚𝑛−1.

The BDF formula or order k:

1

𝑗
𝛻𝑗𝒚𝑛+1 = ℎ𝑓(𝑡𝑛+1, 𝒚𝑛+1)

𝑘

𝑗=1

The case 𝑘 = 1 is the BE
method.

ndf15 is the method used in
CLASS

3 April, 2014 CLASS/MontePython Workshop, Geneva 16

